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Abstract The constitutive modelling of granular, porous
and quasi-brittle materials is based on yield (or damage)
functions, which may exhibit features (for instance, lack
of convexity, or branches where the values go to infinity,
or ‘false elastic domains’) preventing the use of efficient
return-mapping integration schemes. This problem is solved
by proposing a general construction strategy to define an
implicitly defined convex yield function starting from any
convex yield surface. Based on this implicit definition of
the yield function, a return-mapping integration scheme is
implemented and tested for elastic–plastic (or -damaging)
rate equations. The scheme is general and, although it intro-
duces a numerical cost when compared to situations where
the scheme is not needed, is demonstrated to perform cor-
rectly and accurately.
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02-106 Warsaw, Poland
e-mail: sstupkie@ippt.pan.pl

R. Denzer
TU Dortmund, Leonhard-Euler-Strasse 5, D-44227 Dortmund,
Germany
e-mail: ralf.denzer@tu-dortmund.de

A. Piccolroaz · D. Bigoni
University of Trento, via Mesiano 77, I-38123 Trento, Italy
e-mail: roaz@ing.unitn.it

D. Bigoni
e-mail: bigoni@ing.unitn.it

Keywords Plasticity · Return mapping algorithm ·
Automatic differentiation

1 Introduction

The pressure-sensitive yielding of granular, porous, and
quasi-brittle materials (such as ceramic or metallic pow-
ders, porous metals, rocks and concretes), or the Lode’s
angle dependence of high-strength and shape memory alloys,
forces the use of complex yield functions in the plastic
or damaging constitutive modelling. These yield functions
(three examples are those introduced by Jeremic et al. [7],
by Foster et al. [5] and by Bigoni and Piccolroaz [2], the
last called ‘BP’ in the following) often display ‘undesidered
features’, such as for instance lack of convexity, or regions
where they blow up to infinity or, as indicated by Brannon
and Leelavanichkul [4], ‘false elastic domains’ (in which
negative values are associated to stress states external to the
‘true’ elastic domain), preventing the use of standard return-
mapping integration algorithms. Moreover, these yield func-
tions often describe high-curvature surfaces and nearly sharp
vertices, which are difficult to treat with the necessary accu-
racy and definitely slow down numerical procedures. Reme-
dies to these problems have been proposed in [4] and [12],
but the former technique, based on a multi-stage algorithm, is
very complex, while the latter, based on a cutoff-substepping
return algorithm, is applicable only to the BP yield function.

The purpose of the present article is to introduce a new
approach to the problem, where a general procedure to con-
struct an implicit definition of a convex yield function starting
from a convex yield surface is proposed and the related appli-
cation within a standard return-mapping scheme is explained
and tested. The method is general, simple to be implemented,
and applies to every convex yield surface. It is shown to be,
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on the one hand, associated to a computational cost (which
has to be regarded as the counterpart of the complexity of the
employed yield function), but on the other hand, to be robust
and to provide accurate and stable results.

The paper is organized as follows. The general setting of
the implicit yield function formulation is presented in Sect. 2.
The original BP yield function [2] is recalled, and its unde-
sired features are illustrated in Sect. 3. In Sect. 4, the general
formulation is specified for the BP yield surface: the implicit
yield function is formulated in the (p, q)-space, and the pre-
sentation style is oriented towards computer implementation
employing an automatic differentiation (AD) technique and
AceGen, an automatic code generation system [8,9]. The
complete AceGen input is also provided as a supplementary
material accompanying the paper along with ready-to-use
subroutines in C, Fortran, Mathematica and Matlab. Feasi-
bility of the implicit yield function concept in incremental
elastoplasticity is finally illustrated in Sect. 5.

2 Implicit yield function: general setting

Consider a yield function F(σ , η), depending on stress σ and
hardening variables η, that defines a convex elastic domain
E such that the boundary ∂E of the elastic domain, i.e., the
yield surface, is specified by the zero level set, F(σ , η) = 0.
As discussed in the introduction, the yield function F may
be non-convex or defined infinity in some regions, see Sect. 3
for the illustration of those features in the case of the BP yield
function.

The strategy proposed in the present paper to overcome
the difficulties mentioned above is to introduce an alternative
yield function F∗(σ , η) that is defined for an arbitrary stress,
and such that its zero level set F∗ = 0 (i.e., the yield surface)
is identical to that of the original yield function, F = 0. In
this way, the elastic domain E and its closure, which are the
only two relevant quantities from the mechanical point of
view, will remain the same as for the original yield function
F(σ , η), but convexity and finiteness will be enforced.

Note that the yield surface may be non-convex with respect
to the hardening or damage variables η which could result
in convergence problems in an incremental computational
scheme, e.g., [16]. However, such non-convexity would be a
constitutive feature of a specific hardening/softening law that
cannot be removed by reformulating the yield function itself.
For the sake of a compact notation, we will skip the depen-
dence of F on η in this section, because only the dependency
on σ is relevant in the following.

The main idea is to use the so-called convex distance func-
tion dE (σ ) of the zero level set F = 0, i.e., the boundary of
the elastic domain ∂E , of the original yield function. The
convex distance function is defined as

dE = const

o

σ0

er

E

σ

∂E

Fig. 1 Convex distance function

dE (σ ) := ‖σ − o‖
‖σ 0(σ ) − o‖ (1)

with ‖ · ‖ being the 2-norm, o ∈ E\∂E representing a fixed
reference point inside the elastic domain, and we define
dE (o) = 0. The convex distance function has the property

dE (σ ) =

⎧
⎪⎨

⎪⎩

[0, 1) if σ ∈ E\∂E
1 if σ ∈ ∂E
> 1 if σ �∈ E

(2)

and it is a convex function, see [3,6] for a proof. In this
definition, σ 0(σ ) is the unique intersection of a ray from o in
the direction of σ with the boundary ∂E of the elastic domain
as depicted in Fig. 1.

To compute the unique intersection point σ 0(σ ) we define
a ray from the reference point o in the direction of σ by

r(σ , �̂) = o + �̂er (3)

with

er = σ − o
‖σ − o‖ , �̂ > 0 and σ �= o, (4)

and introduce the following abbreviations

� = σ − o, �0 = σ 0 − o, � = ‖�‖, �0 = ‖�0‖, (5)

so that r(σ , �) = σ and r(σ , �0) = σ 0.
The intersection of the ray with the boundary ∂E of the

elastic domain, i.e. the original yield surface, is computed by

F0(�0, σ ) = F(r(σ , �0)) = 0, (6)

which, for a fixed σ , is in general a nonlinear equation for �0.
One would solve this nonlinear equation, e.g., by a Newton-
type or a regula falsi method. If �0 is the unique solution of
Eq. 6, then the intersection point is given by

σ 0(σ ) = r(σ , �0(σ )), (7)

where we indicate that the solution �0 depends (implicitly)
on σ through Eq. (6).
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With this at hand, we can implicitly define a new convex
yield function F∗ based only on the yield surface F = 0 of
the original yield function by

F∗(σ ) = dE (σ ) − 1 = �(σ )

�0(σ )
− 1, (8)

where the term −1 is introduced such that we obtain the
common property F∗ = 0 on the yield surface. One should
observe that the zero level sets F∗ = 0 and F = 0 are identi-
cal but that the new yield function F∗ inherits the convexity
from the convex distance function dE .

In plasticity, we usually need the first derivative of the
yield function with respect the the stress σ , e.g., to define
the flow direction in the case of an associated flow rule, and
with respect to the hardening variables η, and often also the
second derivative, e.g., to compute the consistent tangent. By
differentiating Eq. (8)2, we have

∂ F∗

∂σ
= 1

�0

∂�

∂σ
− �

�2
0

∂�0

∂σ
, (9)

where the explicit derivative ∂�/∂σ reads

∂�

∂σ
= er . (10)

The dependence of �0 on σ is implicit through Eq. (6). To
compute the derivative of this implicit dependence, the total
derivative of Eq. (6) with respect to σ is computed,

∂

∂σ
F(o + �0(σ )er (σ ))

=
(

�0
∂er

∂σ
+ ∂�0

∂σ
⊗ er

) [
∂ F

∂σ

∣
∣
∣
∣
σ 0

]

= 0, (11)

where the gradient of the original yield function ∂ F/∂σ is
evaluated at σ 0, and we have

∂er

∂σ
= 1

�
(S − er ⊗ er ) (12)

with S denoting the symmetrizing fourth order tensor. In
Eq. (11) and in the following, the square brackets indi-
cate double contraction of the second order tensor enclosed
within the brackets with the fourth order tensor preceding the
brackets. Equation (11) is solved for the implicit derivative
∂�0/∂σ , thus yielding

∂�0

∂σ
= �0

�
er − �0

�

(

er · ∂ F

∂σ

∣
∣
∣
∣
σ 0

)−1
∂ F

∂σ

∣
∣
∣
∣
σ 0

. (13)

Finally, combing Eqs. (9), (10) and (13), the first derivative
of F∗ with respect to σ is obtained as

∂ F∗

∂σ
= 1

�0

(

er · ∂ F

∂σ

∣
∣
∣
∣
σ 0

)−1
∂ F

∂σ

∣
∣
∣
∣
σ 0

. (14)

The main ingredient of ∂ F∗/∂σ is the gradient of the original
yield function ∂ F/∂σ evaluated at the intersection point σ 0,

and it is seen that the former is equal to the latter multiplied
by a scalar.

For completeness, the second derivative of F∗ with respect
to σ is provided in “Appendix”. The derivatives with respect
to the hardening variables η and the mixed second derivatives
can be obtained analogously. In the implementation approach
adopted in the present work, the necessary derivatives of the
implicit yield function F∗ are obtained using an automatic
differentiation technique, hence the explicit formulae are, in
fact, not needed. The corresponding formulation, with appli-
cation to the BP yield function, is presented in Sect. 4.

3 Original BP yield function

In this section, the original Bigoni–Piccolroaz (BP) yield
function [2] is briefly introduced, and its deficiencies con-
cerning its practical application in computational plasticity
are illustrated.

Introduce first the following invariants of the stress
tensor σ :

p = −1

3
trσ , q = √

3J2, θ = 1

3
cos−1

(
3
√

3

2

J3

J 3/2
2

)

,

(15)

where θ is the Lode angle, and J2 = 1
2σ ′ ·σ ′ and J3 = det σ ′

are the usual invariants of the stress deviator σ ′ = σ + 1
3 pI,

see, for instance, [1].
The original BP yield function is defined by the following

equations:

F(σ , η) = F̂(p, q, θ, η) = f (p) + q

g(θ)
, (16)

where

f (p) =
{−Mpc

√
(� − �m)[2(1 − α)� + α] if � ∈ [0, 1],

+∞ otherwise,

(17)

� = p + c

pc + c
, (18)

and

g(θ) = 1

cos[βπ/6 − (1/3) cos−1(γ cos 3θ)] . (19)

Here, pc and c define the size and position of the yield sur-
face along the hydrostatic axis, and M , m, α, β and γ are
parameters that define the shape of the yield surface in the
stress space. All these parameters may depend on the hard-
ening variables that are here left unspecified and collectively
denoted by η. For instance, in the model for ceramic powder
compaction [14,15], the forming pressure pc is adopted as
the only hardening variable that is related to the volumetric
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Fig. 2 Iso-lines of the BP yield function in the (p, q)–space: a original
yield function F is defined infinity in the white regions, b the squared
yield function F2, Eq. (20), is not convex (F is normalized by pc and
F2 is normalized by p2

c ). Parameters of the yield function correspond
to alumina powder, see Sect. 5, and Lode angle is assumed as θ = 0

plastic deformation, cohesion c is assumed to depend on pc,
while the remaining parameters are assumed constant.

To enforce convexity, the BP yield function in its original
version (16) is defined infinity for stress states for which
� /∈ [0, 1], indicated as white zones in Fig. 2a. This is
an inconvenience for numerical implementation, as virtually
any stress state can be encountered during iterative solution of
the incremental constitutive equations resulting, for instance,
from application of the return mapping algorithm.

One way to overcome this problem is to use a ‘squared
version’ of the yield function (16) defined by

F2(σ , η) = − f 2(p) + q2

g2(θ)
, (20)

(p, q)

(pr, 0) p

q

(p0, q0)

0

F ∗ = const

F = 0

pc−c

Fig. 3 Construction of the implicit yield function F∗ in the (p, q)-
space

which corresponds to the same BP yield surface and is defined
for arbitrary stress, but looses convexity,1 as illustrated in Fig.
2b. Here, the squared function f 2(p) is defined for arbitrary
p by the first branch in Eq. (17). The nonconvex yield func-
tion shows, in the terminology introduced by Brannon and
Leelavanichkul [4], a ‘false elastic domain’ so that, employ-
ing a return mapping algorithm it may happen (for certain
trial stresses) that convergence is reached at a wrong stress
state. Nonconvexity may also lead to divergence of the cor-
responding iterative scheme.

4 Implicit yield function in the ( p, q)-space

In the special case of the BP yield function defined by
Eq. (16), one can use the general formulation of the implicit
yield function, as presented in Sect. 2. However, as only the
pressure-dependent part f (p) specified by Eq. (17) is incon-
venient for numerical implementation, it is simpler and thus
numerically more efficient to apply the implicit yield func-
tion formulation in the (p, q)-space, as shown below.

Compared to Sect. 2, a somewhat different presentation
style is adopted here, which is oriented towards computer
implementation using an automatic differentiation (AD)
technique and AceGen, an automatic code generation system
[8,9]. Accordingly, the specific formulae, such as that in Eq.
(14) are not provided, as they are not needed, and the focus
is on indicating the actual dependencies and on defining the
implicit derivatives of �0.

Consider the (p, q)-space and the yield surface F = 0
corresponding to a fixed Lode angle θ , see Fig. 3. The implicit
yield function F∗ is given by, see Eq. (8),

F∗(σ , η) = �

�0
− 1, (21)

1 We have thoroughly tried to reformulate the BP model to make the
yield function globally smooth and convex, but this has not been possi-
ble.
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where � is now the distance between the current stress point
(p, q) in the (p, q)–plane and a reference point (pr , 0) taken
inside the yield surface,

� = ‖�‖, � = (p − pr , q), (22)

and �0 is the distance between the reference point (pr , 0)

and the image (p0, q0) of the current stress point (p, q),

�0 = ‖�0‖, �0 = (p0 − pr , q0), � = (1 + F∗)�0. (23)

The image point (p0, q0), which is the counterpart of σ 0 of
Sect. 2, lies on the yield surface, thus

F̂(p0, q0, θ, η) = 0, (24)

F̂ being the yield function expressed in terms of the invari-
ants, cf. Eq. (16). In the present implementation, the squared
version of the yield function, Eq. (20), is actually used instead
of the original version (16), as the former is more convenient
for practical application.

By construction, the yield function F∗ defined by Eq. (21)
generates a family of self-similar surfaces F∗ = const that
are scaled with respect to the reference point (pr , 0), as Fig. 3
illustrates. Self-similarity implies that the implicit yield func-
tion is convex if the generating yield surface F = 0 is convex.

The iso-lines of the implicit BP yield function in the
(p, q)-plane are shown in Fig. 4a (the model parameters
are equal to those adopted in Fig. 2). Figure 4b shows the
iso-surfaces of the implicit BP yield function in the princi-
pal stress space. Here and in the following, the position of
the reference point has been assumed as pr = (pc + c)/2,
although other choices (for instance, the center of mass of
the yield surface [12]) can be made.

The value of the yield function F∗ is defined implicitly
by Eq. (24), i.e., by the condition that the image point lies
on the yield surface. This can be formulated as a nonlinear
equation for �0 (at fixed σ and η),

F0(�0, σ , η) = 0, (25)

which is solved using the iterative Newton method,

�i+1
0 = �i

0 + Δ�i
0, Δ�i

0 = −
(

∂ F0

∂�0

)−1

F0(�
i
0). (26)

The solution �0 implicitly depends on the stress σ and
hardening variables η through Eq. (25). The derivative of �0

with respect to σ is obtained by taking the total derivative of
Eq. (25) with respect to σ ,

∂ F0

∂�0

∂�0

∂σ
+ ∂ F0

∂σ
= 0, (27)

so that

∂�0

∂σ
= −

(
∂ F0

∂�0

)−1
∂ F0

∂σ
. (28)

(a)
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Fig. 4 The iso-lines (iso-surfaces) of the implicit BP yield function: a
in the (p, q)-space, b in the principal stress space

The second derivative, which is also needed, is obtained by
differentiating (27) with respect to σ again, which gives

∂2�0

∂σ∂σ
= −

(
∂ F0

∂�0

)−1 (
∂2 F0

∂�0∂�0

∂�0

∂σ
⊗ ∂�0

∂σ

+ ∂2 F0

∂σ∂σ
+ 2

(
∂2 F0

∂σ∂�0
⊗ ∂�0

∂σ

)

sym

)

. (29)

Derivatives of �0 with respect to hardening variables η, as
well as mixed second derivatives, are obtained analogously.
In fact, the formulae for the implicit derivatives of �0 with
respect to η are obtained by simply replacing σ by η in
Eqs. (28) and (29), with the adequate redefinition of the ten-
sor product in Eq. (29).
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The first derivative ∂�0/∂σ , Eq. (28), is needed, for
instance, to compute the gradient of the implicit yield func-
tion, see Eq. (9). The second derivative comes into play when
the constitutive update problem is solved and when the incre-
mental constitutive equations are linearized, see Sect. 5.1.

Computer implementation of the above implicit BP yield
function has been performed using AceGen, a code genera-
tion system that combines the symbolic algebra capabilities
of Mathematica (www.wolfram.com) with an automatic dif-
ferentiation technique and a stochastic expression optimiza-
tion technique [8,9]. In particular, all the necessary explicit
derivatives are directly derived by automatic differentiation,
while the implicit derivatives of �0, i.e., those specified by
Eqs. (28) and (29), are introduced using the so-called AD
exceptions implemented in AceGen [9].

The AceGen implementation of the implicit BP yield func-
tion is provided as a supplementary material accompanying
this paper. Specifically, the complete AceGen input is pro-
vided for generating the numerical code that computes the
implicit BP yield function F∗ and its first and second deriv-
atives with respect to the stress σ and with respect to all the
parameters defining the yield surface. The AceGen code, as
well as the corresponding ready-to-use subroutines in C, For-
tran, Mathematica and Matlab, are also available at our web
sites.2

5 Application to return mapping algorithm

In this section, feasibility of the implicit yield function con-
cept is illustrated in the context of time integration algorithms
in elastoplasticity. The classical return mapping algorithm is
first recalled and its performance is subsequently evaluated
in the case when the implicit BP yield function is used in an
elastoplastic model based on perfect plasticity.

5.1 Return mapping algorithm

The return mapping algorithm is here introduced for the pos-
sibly simplest model of elastoplasticity. Specifically, ideal
plasticity (no hardening) and the associated flow rule are
assumed. No restrictions are introduced for the yield sur-
face, except the usual assumptions of convexity and smooth-
ness. The goal is to apply the return mapping algorithm to
a yield surface that is defined by an implicit yield function,
such as the BP yield surface, and this can be sufficiently
accomplished for the present simple model. For more gen-
eral formulations of elastoplasticity and their computational
treatment, the reader is referred, for instance, to the mono-
graphs [17,18].

2 http://www.ippt.pan.pl/~sstupkie/files/BPyield.html, http://ssmg.
unitn.it/BPyield.html

Upon backward-Euler integration of the flow rule, the
incremental constitutive equations can be written in the form
of the following constitutive update problem:

Constitutive update problem Given the strain εn+1 at the cur-
rent time step t = tn+1 and the plastic strain ε

p
n at the previ-

ous time step t = tn , find the current plastic strain ε
p
n+1 and

the plastic multiplier Δγ that satisfy the elastic constitutive
equation

σ n+1 = C[εn+1 − ε
p
n+1], (30)

the incremental flow rule

ε
p
n+1 = ε

p
n + Δγ n(σ n+1), n = ∂ F

∂σ
, (31)

and the complementarity conditions

F(σ n+1) ≤ 0, Δγ ≥ 0, Δγ F(σ n+1) = 0, (32)

where F(σ ) is a given yield function with a convex and
smooth zero level set F(σ ) = 0, and C denotes the fourth-
order elastic moduli tensor.

The constitutive update problem is solved using the return
mapping algorithm which involves the following steps:

1. Compute the trial elastic state

σ trial
n+1 = C[εn+1 − ε

p
n ], Ftrial = F(σ trial

n+1). (33)

2. Check the yield condition: if Ftrial ≤ 0 then the step is
elastic and

ε
p
n+1 = ε

p
n , Δγ = 0. (34)

3. If Ftrial > 0 then the step is plastic and the following
nonlinear algebraic equations are solved for ε

p
n+1 and

Δγ :

0 = ε
p
n+1 − ε

p
n − Δγ n(σ n+1),

0 = F(σ n+1),
(35)

where the stress σ n+1 is given by the constitutive equa-
tion (30).

Denote the vector of unknowns and the residual vec-
tor corresponding to the nonlinear equations (35) by h =
{ε p

n+1,Δγ } and Q(h), respectively. Equation Q(h) = 0 is
then solved using the Newton method which employs the
following iterative scheme:

hi+1 = hi + Δhi , Δhi = −
(

∂Q
∂h

)−1

Q(hi ), (36)

with the typical initial guess h0 = {ε p
n , 0}.
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At the solution of the constitutive update problem, the
current stress σ n+1 belongs to the elastic domain F(σ ) ≤ 0.
However, the trial stress σ trial

n+1 and the stresses σ i
n+1 at sub-

sequent iterations may lie well outside the elastic domain. It
is thus crucial for the direct application of the return map-
ping algorithm that the yield function F(σ ) be defined and
differentiable for arbitrary stress. The original BP yield func-
tion (but also many other yield functions, for instance, those
of Jeremic et al. [7] and Foster et al. [5]) is thus not suit-
able for the return mapping algorithm, while the implicit one
introduced in Sect. 4 is fully suitable.

Note that the flow rule (31) involves the gradient of the
yield function. The tangent matrix ∂Q/∂h used in the Newton
scheme (36) involves thus the second derivative of the yield
function. In the case of the implicit yield function, those
derivatives cannot be obtained directly, so that the implicit
derivatives discussed in Sect. 4 must be used instead.

Convergence of the iterative Newton scheme (36) is not
guaranteed in general. This difficulty can be circumvented (at
least partially) by applying a globally convergent scheme, for
instance, by enhancing the Newton scheme with a suitable
line search strategy. The iterative update (36)1 would then be
replaced by the following one: hi+1 = hi +αiΔhi , where the
line search parameter 0 < αi ≤ 1 is determined by requir-
ing that the iterative update results in a sufficient decrease of
an appropriate merit function, see, for instance, [11]. In the
numerical study reported in Sect. 5.3, the Newton method
combined with the line search scheme specified in Box A.1
of [13] has been used in addition to the pure Newton method
specified by Eq. (36). More elaborate, globally convergent
schemes employing primal and dual algorithms for the solu-
tion of the closest-point projection problems in incremental
elastoplasticity are discussed in [13].

5.2 Implementation and computational efficiency

For the purpose of testing of the proposed implicit yield func-
tion formulation, a simple computer code has been developed
that implements the return mapping algorithm described in
the previous section. The code solves the constitutive update
problem (30)–(32) in a format that exactly corresponds to the
constitutive model implementation in a displacement-based
finite element code. Specifically, for a given total strain εn+1

and previous plastic strain ε
p
n , the current plastic strain ε

p
n+1

is computed along with the current stress σ n+1 and consistent
tangent moduli

C
ep
n+1 = ∂σ n+1

∂εn+1
. (37)

While the code developed to test the proposed formulation
is limited for simplicity to material-point computations and
small-strain ideal elastoplasticity, the implicit yield function
formulation has already been successfully implemented in a

finite-element framework and for a much more general class
of constitutive models. In particular, the model for ceramic
powder compaction [14,15] has been implemented in its
finite-strain version including effects such as nonlinear hard-
ening, elastoplastic coupling, and non-associated flow rule.
Some examples of the corresponding finite-element simu-
lations of ceramic powder forming processes, but without
details of algorithmic treatment, are reported in [19].

Computer implementation of the incremental constitu-
tive equations has been performed using the AceGen sys-
tem [8,9]. The formulation of incremental elastoplasticity
that is appropriate for an automated implementation using
AceGen is introduced in [9]; a concise presentation of the
formulation can also be found in [10]. As an essential part
of this formulation, an automatic differentiation technique
is used to automatically derive the consistent tangent mod-
uli Cep

n+1 and other relevant quantities such as the dependent
tangent ∂Q/∂h involved in the Newton scheme (36). In the
context of the present implicit yield function formulation, the
automatic differentiation technique is also used to efficiently
implement the implicit derivatives (28) and (29), represent-
ing an important ‘ingredient’ in the formulation. This part
of AceGen implementation is available as a supplementary
material, see Sect. 4.

It is obvious that the use of an implicitly defined yield func-
tion, as introduced in Sect. 4, in incremental algorithms of
elastoplasticity is necessarily associated with an extra com-
putational cost due to the nonlinear equation (25), that must
be solved at each evaluation of the yield function. Further-
more, evaluation of the gradient and second derivative of the
yield function requires evaluation of the implicit derivatives
(28) and (29), and this also has a computational price. There-
fore, it is worthwhile to assess the computational efficiency
of the implicit yield function formulation, and this is done
below with reference to the Cam-clay model.

The original Cam-clay yield function is defined as Fcc =
(q/M)2 + p(p − pc), but instead than this, the transformed
Cam-clay yield function F∗

cc will now be used,

F∗
cc(σ ) =

√
(

2q

Mpc

)2

+
(

2p

pc
− 1

)2

− 1, (38)

which specifies the same yield surface F∗
cc = 0 as the original

Cam-clay yield function, Fcc = 0. At the same time, the
transformed yield function F∗

cc is equivalent to the implicit
BP yield function F∗, Eq. (21), obtained in the special case
corresponding to the Cam-clay yield surface, by setting c =
0, m = 2, α = 1, β = 1, and γ = 0, cf. [2].

Being numerically equivalent, the two yield functions
exhibit identical convergence behavior in the return map-
ping algorithm, but they differ in computational efficiency:
F∗

cc is an explicit analytical function while F∗ is implicit and
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Table 1 Normalized evaluation
time and code size for the
solution of the constitutive
update problem for the
Cam-clay yield function

Cam-clay yield function F∗
cc Implicit BP yield function F∗

σ n+1 σ n+1 & C
ep
n+1 σ n+1 σ n+1 & C

ep
n+1

Evaluation time 1.000 1.032 4.148 4.408

Code size 1.000 1.506 2.916 3.824

Table 2 Model parameters used
in the convergence study E (MPa) ν pc (MPa) c (MPa) M m α β γ

Alumina powder 1,000 0.3 10 0 1.1 2 0.1 0.19 0.9

Concrete 11,200 0.18 350 2 0.26 2 1.99 0.12 0.98

thus is associated with an additional computational cost, as
described above.

Table 1 presents the results of a study of computational
efficiency of the implicit BP yield function F∗. The consti-
tutive update problem has been repeatedly solved for sev-
eral values of input variables, and the corresponding over-
all evaluation time has been determined. That procedure has
been applied for the Cam-clay yield function F∗

cc and for
the implicit BP yield function F∗, with parameters adjusted
such that the response of the two is identical. The specific
model parameters (E , ν, pc, M) used in the present study are
given in Table 2 (and are typical of alumina powder), while
the remaining parameters of the BP yield function assume
the special values that define the Cam-clay yield surface (see
above).

In addition to the computation of both the stress and
the consistent tangent moduli (marked “σ n+1 & C

ep
n+1” in

Table 1), the code has also been tested when computing only
the stress (marked “σ n+1” in Table 1). The evaluation times,
normalized by the evaluation time needed for the computa-
tion of the stress using the Cam-clay yield function F∗

cc, are
reported in Table 1.

The return mapping algorithm based on the implicit yield
function F∗ has been found to be approximately four times
less efficient than that employing the explicit Cam-clay yield
function F∗

cc. It is reminded here that the convergence behav-
ior, including the number of Newton iterations, of both for-
mulations is identical, so that the difference is solely due to
the extra cost of evaluation of the implicit yield function and
its derivatives. Though the factor of four might at a first glance
seem significant, two aspects have to be considered. Firstly, a
very simple elastoplastic model has been used in the present
study, so that the evaluation of the yield function and its
derivatives constitutes a significant part of the complete for-
mulation. In more complex models (involving, for instance,
hardening, elastoplastic coupling, or finite-strain effects), the
extra cost of evaluation of the implicit yield function related
to the (increased) overall cost of the constitutive update prob-
lem becomes significantly lower. Secondly, the remarkable
flexibility of the meridian and deviatoric shape of the BP
yield surface must be associated to some ‘computational
cost’.

Interestingly, the additional computing cost for the consis-
tent tangent moduli is surprisingly small, when compared to
the computing cost of the stress only, as it is well below
10 % for both formulations. This is probably due to the
highly efficient treatment of implicit dependencies through
the so-called AD exceptions that are implemented in AceGen,
see [9].

Table 1 shows also the normalized size of the generated
C code. As expected, the use of the implicit yield function
F∗ results in an increase of the code size by a factor of 2–3,
with respect to the code corresponding to the explicit yield
function F∗

cc. The code size is in some way related to the
evaluation time, so that the remarks concerning the latter
apply also here.

5.3 Convergence of the return mapping algorithm

In this section, convergence of the return mapping algorithm
is analyzed for two sets of model parameters that correspond
to alumina powder [14] and concrete [12]. The model para-
meters are provided in Table 2, and the corresponding yield
surfaces are shown in Fig. 5.

In the present study, the number of iterations needed for the
convergence of the return mapping algorithm has been evalu-
ated as a function of the elastic trial state. Due to isotropy, the
trial stress σ trial is fully characterized by its invariants ptrial,
qtrial and θ trial, and Figs. 6 and 7 show the number of itera-
tions as a function of ptrial and qtrial for three selected values
of θ trial. Note that ptrial and qtrial have been normalized by
pc so that the elastic range (in which the number of itera-
tions is obviously equal to zero) occupies a very small region
corresponding to 0 ≤ ptrial/pc ≤ 1 and qtrial/pc close to
zero. Each contour plot shown in Figs. 6 and 7 has been
obtained by sampling the trial (p, q)-space using 200×200
points.

The maximum number of iterations has been set to 50,
and the white regions in Figs. 6 and 7 indicate the regions
where the maximum number of iterations has been reached
and which are thus considered ‘no-convergence regions’. It
has been checked that, in the case of the pure Newton method
(reported in the top rows in Figs. 6 and 7), no-convergence
regions do not noticeably decrease with an increase of the
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(a)

(b)

Fig. 5 Yield surfaces in the principal stress space: a alumina powder,
b concrete

maximum number of iterations. The figures corresponding
to the Newton method with line search (reported in the bot-
tom rows in Figs. 6 and 7), show only isolated spots of lack
of convergence, and it has been checked that these regions
vanish when the maximum number of iterations is further
increased.

The main purpose of the present numerical example is to
show that the implicit yield surface formulation can be effec-
tively applied to develop incremental schemes for elasto-
plasticity. This goal has been achieved by showing that the
implicit BP yield function can be evaluated for arbitrary
stresses, so that the standard return mapping algorithm can
be applied directly, while this is not the case of the original
BP yield function, as illustrated in Sect. 3. Further, by con-
struction, the implicit yield function is convex (provided that
the generating yield surface is convex), which is beneficial
for the convergence of the return mapping algorithm. This
is illustrated by the excellent convergence properties of the
return mapping algorithm, employing the Newton method
combined with a standard line search strategy.
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45
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25

35

45

(a) (b) (c)

Fig. 6 Number of iterations needed for convergence of the return map-
ping algorithm using the Newton method (top row) and the Newton
method with line search (bottom row) for a θ trial = 0, b θ trial = π/6,

c θ trial = π/3. White regions indicate lack of convergence (defined as
more than 50 iterations). The parameters of the yield function corre-
spond to alumina powder
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Fig. 7 Number of iterations needed for convergence of the return map-
ping algorithm using the Newton method (top row) and the Newton
method with line search (bottom row) for a θ trial = 0, b θ trial = π/6,

c θ trial = π/3. White regions indicate lack of convergence (defined as
more than 50 iterations). The parameters of the yield function corre-
spond to concrete

Note that the two yield surfaces used in the present study
pose difficulties in their computational treatment as they
locally exhibit very high curvature. Especially the yield sur-
face representative of concrete features sharp edges in the
deviatoric section (γ = 0.98) and nearly a vertex on the
hydrostatic axis located at high pressure (α = 1.99). Those
features are responsible for the poor convergence of the pure
Newton method, particularly for θ trial = π/6, both for the
model for alumina powder and for the model for concrete,
see Figs. 6b and 7b (in the latter case, the no-convergence
region spans the whole plot).

It should be noted here that the simple return mapping
algorithm enhanced with a line search strategy performs so
well because the elastoplastic model is rather simple, so that
the only difficulty lies in the complexity of the yield surface,
as related, in particular, to its high curvature. Effects such as
strain hardening and elastoplastic coupling, which are cru-
cial in applications involving granular and rock-like mate-
rials, would definitely deteriorate convergence of the return
mapping algorithm. Anyway, the implicit yield function for-
mulation may offer significant advantages in the development
of more advanced incremental formulations of elastoplastic-
ity.

6 Conclusions

A technique has been introduced to integrate elastoplastic (or
elastodamaging) rate equations based on pressure-sensitive
and J3-dependent yield functions that often exhibit undesired
features such as lack of convexity or ‘false elastic domains’.
The technique is based on a re-definition of the yield function
in an implicit form, that can be subsequently treated with
standard numerical tools. Although associated to a numerical
cost, the proposed technique is shown to be efficient, general
and accurate.
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7 Appendix: Second derivative of F∗

The second derivative of the implicit yield function is
obtained by differentiating Eq. (9), viz.

∂2 F∗

∂σ∂σ
= 1

�0

∂2�

∂σ∂σ
− �

�2
0

∂2�0

∂σ∂σ

+2�

�3
0

∂�0

∂σ
⊗ ∂�0

∂σ
− 2

�2
0

(
∂�

∂σ
⊗ ∂�0

∂σ

)

sym
. (39)

The above formula involves the explicit first and second
derivatives of � and the implicit first and second derivatives
of �0. The first derivative of � is given by Eq. (10), the second
derivative is given by

∂2�

∂σ∂σ
= 1

�
(S − er ⊗ er ), (40)

in view of Eq. (12). The implicit first derivative of �0 has been
derived in Sect. 2, see Eq. (13), and the second derivative is
obtained below.

For future use, we introduce the following notation for the
derivatives of the original yield function evaluated at σ 0,

n0 = ∂ F

∂σ

∣
∣
∣
∣
σ 0

, H0 = ∂2 F

∂σ∂σ

∣
∣
∣
∣
σ 0

, nr = er · n0. (41)

With this notation, the first derivatives of �0 and F∗, Eqs. (13)
and (14), respectively, are written as

∂�0

∂σ
= �0

�

(
er − n−1

r n0
)
,

∂ F∗

∂σ
= 1

�0

(
n−1

r n0
)
. (42)

As discussed in Sect. 2, the implicit dependence of �0 on σ

is introduced by the condition that σ0 lies on the yield surface,
i.e., F(o + �0(σ )er (σ )) = 0. This equation is differentiated
with respect to σ twice, and the resulting equation is solved
for the unknown second derivative of �0, just like in the case
of the first derivative in Sect. 2, and the following formula is
obtained:

∂2�0

∂σ∂σ
= �0

�2

(
S − er ⊗ er − 2n−1

r

(
er ⊗ n0

)

sym

+ 2n−2
r n0 ⊗ n0

)

−�2
0

�2

(
n−1

r H0 − 2n−2
r

(
n0 ⊗ H0[er ]

)

sym

+ n−3
r

(
er · H0[er ]

)
n0 ⊗ n0

)
. (43)

With this at hand, the second derivative of F∗ is finally
obtained in a remarkably simple form,

∂2 F∗

∂σ∂σ
= 1

�

(
n−1

r H0 − 2n−2
r

(
n0 ⊗ H0[er ]

)

sym

+ n−3
r

(
er · H0[er ]

)
n0 ⊗ n0

)
. (44)
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