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Abstract

Progress in the manufacturing of ceramics, but also of sintered metals, strongly relies on the evaluation of the density distribution
in green bodies. This evaluation is crucial from many points of view, including the calibration of constitutive models for in-silico
simulation of densif cation processes. To this end, X-ray tomography and other techniques are possible but can be unmanageable for
some institutions. Therefore, a destructive method is introduced in the present article to measure the density f eld of a green body
sample using a CNC mill, an analytical balance, and analysis techniques from the f eld of computational tomography. A virtual
experiment is presented where the method is used to reconstruct a simulated green body density f eld and is found to satisfactorily
correspond to the original solution. The green body density f eld of a truncated cylinder made of alumina powder is evaluated using
this method and the reconstructed f eld is presented.
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1. Introduction

The ceramics industry is interested in increasing ef ciency,
reducing waste, and, therefore, reducing costs. During the pro-
duction process the extent of heterogeneity in the green body
directly inf uences the f nal geometry, strength, and hardness
after sintering[2]. Not only do these variations usually de-
crease product performance, they also amplify uncertainty in
material behavior which is unacceptable when producing high-
performance ceramics. Currently, the ceramics industry heav-
ily relies on the process of trial-and-error to determine optimal
mold geometry and forming pressures for a given piece[6].
High-performance ceramics are used in many sectors and are

subjected to many dif erent types of environments. Some usage
examples include: refractory products subject to extreme tem-
peratures, piezoelectrics subject to extreme loading or electric
f elds, or ceramic plates subject to shock loading. Each of these
use-cases requires predictable performance which is often lim-
ited by the uncertainty in macroscopic mechanical behavior of
the piece.
Density inhomogeneities in green bodies are associated with

stress variations which are usually caused by defects in the pro-
duction process. However, when f nal residual stress f elds can
be predicted and utilized in the design process, these residual
stresses can be used to pre-stress the sample to make it more
resilient for the intended use-case.
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Because so much of the f nal performance of the ceramic
piece is dependent on the density of the green body, many dif-
ferent techniques have been developed to measure internal den-
sity. The most simple method for measuring bulk density accu-
rately is to use Archimedes’ principle with mercury displace-
ment instead of water. More technical methods put inclusions
in the powder before compaction in a known conf guration, po-
sition, or concentration and infer the f nal density from the f -
nal positions of the inclusions. Some inclusions that have been
used are: layers of colored powder[2], layers of f lm, or a thin
lattice made of lead[11]. A more recent method for density
measurement has been to measure x-ray attenuation to measure
the average bulk density along the path of an x-ray[1]. The main
benef ts of this last method are that it is non-destructive, rapid,
and can be used on green bodies as well as sintered pieces.

However, the most commonly used density measurement
technique in use in the literature today is to utilize surface hard-
ness measures, either from indentation or from scratching, and
convert them to density measures using a table that correlates
hardness to density[7][14][3]. The three primary drawbacks to
this method are that the table correlating density to hardness
must be produced (either by experimentation or making mate-
rial assumptions), it is a destructive method if more than sur-
face density is desired, and that the sample must have suf cient
cohesion to be worked, scratched, or indented without failure.
The latter drawback is usually overcome by partially sintering
the green body before analysis.

Finally, it is worth mentioning that even the method of X-ray
absorption requires a correlation table and calibration to set the
relationship between the gray level of the X-ray images and the
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bulk density[1].
The density evaluation method introduced in the present arti-

cle is intended to overcome the hurdles of high cost, adding in-
clusions to the sample, steep learning curves to perform or ana-
lyze the measurement, and the need for previously-developed
calibration tables. By decreasing the requirements to make
these measurements, small laboratories or universities with lim-
ited equipment and budgets can perform 3D density measure-
ments. As it makes use of simple computer numerical control
(CNC) mills and an analytical balance, the accuracy of the anal-
ysis is directly related to the accuracy of the equipment and, to a
greater extent, the number of data points taken for the measure-
ment. Therefore, the method can be adapted to the accuracy
needs of each situation.

2. Presentation of the Method

The present method for density distribution evaluation is de-
fined in the following steps: (i) a CNC mill is used to incre-
mentally remove mass from a green body in parallel strips and
an analytical balance is used to weigh the sample before and
after each strip to obtain the corresponding lost mass; (ii) a col-
lection of strips for a given transverse section are combined to
make a single projection; (iii) steps (i) and (ii) are repeated in a
different direction at least one additional time (see note below);
(iv) these projections and the known geometry (defined by the
path, milling bit used, and depth of the CNC mill) of the piece
can be used in a tomographic reconstruction routine; (v) repeat
steps (i) through (iv) for each transverse slice in the sample to
create a 3D reconstruction.

Because the present technique requires at least two projec-
tions to reconstruct the density field and the projection method
is a destructive method, it is advisable to either produce mul-
tiple samples (one per projection) or utilize symmetry of the
body to get multiple projections from a single sample. Multi-
ple projections from the same sample can be accomplished by
milling for one projection on one symmetry section and chang-
ing directions for the other symmetry sections.

The basic concept for machining ceramics while in the green
body state is discussed by Su et al.[17], but here it is applied to
density evaluation, not shaping, finishing, or rapid prototyping.
For a green body of compressed alumina powder, a CNC mill
proved to be able to easily mill the body with sufficient preci-
sion. The largest source of precision loss in the milling stage
was found to be grains becoming dislodged and subsequently
lost, leaving a pocked surface instead of a smooth surface. This
was found to be invariant of the milling speed or the rotational
velocity of the bit. The milled mass needs to be removed after
milling each strip, which can be accomplished with a vacuum or
compressed air to either suck up or blow away the filings. For
all but the smallest sections, the magnitude of this effect was
not excessive and did not invalidate the measurements. A sam-
ple of pressed alumina powder that is in the process of being
milled is presented in Figure 1.

Figure 1: Texture of a 10g alumina green body formed by 120MPa mean axial
stress in the shape of a truncated cylinder with a 30mm diameter and a 10◦

incline in the process of being milled. The left portion of the sample is the
smooth, inclined surface that was created by the mold during pressing. The
other surfaces are created by the milling process and demonstrate the rough but
uniform texture produced by the CNC mill in the cutting process. The vertical
difference between successive layers is 1mm (e.g. the step between the surfaces
in the top-right and bottom-right of the image).

3. Tomographic Reconstruction

The mathematical basis of Tomography was laid by Johann
Radon in 1917 with his seminal paper that proved that a 2D den-
sity function can be exactly reproduced from an infinite number
of 1D projections[13]. In this paper, he describes what later be-
came known as the Radon transform (the projection step), the
output of which is a sinogram, and the inverse Radon transform
(the reconstruction step). These processes are still the basis for
most reconstruction techniques.

The birth of modern computer tomography occurred around
1970 when computers with sufficient memory and processing
power became available to researchers. One of the first iterative
computational algorithms for reconstructing data from projec-
tions was published by Gordon, Bender, and Herman[9]. Their
paper introduces an iterative method for solving a system of ill-
constrained equations to produce a useful image that approxi-
mates the original structure. While there are currently many dif-
ferent algorithms in use, some more recent reconstruction meth-
ods have been reported to be able to reproduce internal struc-
tures exactly from highly incomplete frequency information[5].

3.1. Theoretical basis of tomography

The inverse Radon transform is simply solving a (typically
non-linear and ill-constrained) system of equations that are de-
rived from a set of projections. Each equation in the system
represents an element of a single projection (see Figure 2). The
formulation is written with a 2D density field f (x, y) ∈ [0,∞),
a projection angle θ ∈ [0◦, 180◦), and a projection element P j

associated with a projection strip g j such that

P j =

∫
g j

f (x, y)dydx, (1)
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Figure 2: A body with a continuously-varying density field f (x, y) is projected
in the direction θ and is gathered into m bins denoted P j of the projection P.
Multiple projections along different values of θ are used to reconstruct the den-
sity field f (x, y).

where j = 1, ...,m. The projection P is the set of projection ele-
ments for one projection direction θ. For a more accurate recon-
struction, more projections with different projection directions
θ1, θ2...θm are required.

In current x-ray tomography, hundreds of high-resolution
projections can be taken for a single reconstruction. These
projections are usually compiled into a sinogram that can suc-
cinctly convey complete projection information in all direc-
tions in one plot (see Figure 3), but is not generally human-
readable. The sinogram is constructed by representing each
projection as a column of an image in a sequential manner ac-
cording to the projection angle. However, when full projec-
tion data are not available, the sinogram is only defined for spe-
cific angle values. There are two methods to handle incomplete
projection data: attempt to interpolate the sinogram[12] or per-
form the reconstruction using only the measured projections[8].
This paper follows the latter method as most research involv-
ing interpolating sinogram data does not attempt to interpolate
over breaks larger than 30 degrees. Three of the most com-
mon types of reconstruction methods are filtered back projec-
tion, algebraic reconstruction technique (ART), and 2D Fourier
reconstruction[4].

3.2. Algebraic Reconstruction Technique

The algebraic reconstruction technique (ART), which is the
reconstruction technique used in this paper, is one of the first
iterative reconstruction methods that was developed in 1974 by
Gordon and Herman[8].

This method updates the ith reconstructed discretized field
value at the qth iteration f q

i by enforcing the reconstruction pro-
jection element Pq

j to agree exactly with the measured projec-
tion element P j. This is accomplished by evaluating the differ-
ence between the measured projection element’s value and the
value of the current iteration and calculating a correction factor.
If the correction factor is applied additively the method is called
the additive ART or, if applied multiplicatively, it is called mul-
tiplicative ART. The additive and multiplicative ART iterative

(a) Phantom (b) Sinogram

Figure 3: An example of a phantom/sinogram pair. The sinogram was produced
using the open-source scikit-image Python library. The analysis domain
consists of the inscribed black circle with the white circle and square inclusions.
The analysis domain is circular such that the cross-section width is uniform for
all projection angles. Notice that, as the projection direction changes in the
sinogram, the circle’s projection is constant while the square’s projection has
two intertwining density peaks (from the corners of the square) that both have
a period of 180◦.

formulas are, respectively,

f q+1
i = f q

i +
P j − Pq

j

N j
f q
i ∀ fi ∈ g j, (2)

and

f q+1
i =

 P j

Pq
j

 f q
i ∀ fi ∈ g j, (3)

with

f 0
i = f̂ =

∑
j

P j

n
∀ fi, (4)

where N j is the number of discretized field elements in the pro-
jection strip g j and n is the total number of discrete values com-
prising the reconstructed field. Because the total slice mass is
independent of the projection direction, it does not matter which
projection is used for initializing the reconstruction field. Equa-
tions (2) or (3) are applied iteratively for each element in each
projection until an equilibrium condition is met.

As there is always noise in data acquisition (both epistemic
and aleatory uncertainty), it is not uncommon that all of the
projection constraints are not able to be exactly met simulta-
neously. In an attempt to overcome this limitation, many dif-
ferent convergence criteria have been suggested over the years,
including in Gordon’s original publication. The three primary
convergence criteria are based on the discrepancy D, entropy S ,
and variance V of the reconstruction. These are defined as

D =

√√√
1
m

m∑
j=1

P j − Pq
j

N j
, (5)

S =
−1
ln n

n∑
i=1

(
f q
i

f̄

)
ln

(
f q
i

f̄

)
, (6)

and

V =

n∑
i=1

( f q
i − f̄ )2, (7)
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where f̄ is the arithmetic mean of the reconstructed field. As
the iteration number increases, D approaches zero and both S
and V tend to a minimum. If the discrepancy does not con-
verge to zero, the reconstruction can be considered converged
when the changes in S and/or V are sufficiently small. There
are methods to alleviate some of the problems associated with
non-convergence, for example, by interleaving iterations of ad-
ditive and multiplicative ART or by applying relaxation factors
to the correction factor for additive ART[10]. In this article, the
interleaved method was implemented to improve convergence.

The fidelity of the reconstruction can be enhanced by ap-
plying constraints to the reconstruction algorithm. An obvious
constraint for reconstructing density fields is to require each el-
ement in the reconstructed field to be non-negative during every
iteration or to only reconstruct the field over a specified domain.
The latter can be accomplished simply by setting f 0

i = 0 for all
field elements outside of the reconstruction domain at each it-
eration.

3.3. Number of Projections

The real benefit of using tomographic techniques to recon-
struct a density field inside a ceramic sample is that it increases
the resolution of the field while decreasing the amount of labor
otherwise required to measure those values. Obviously, a re-
searcher could cut the sample into an arbitrary number of sec-
tions and measure and weigh them to determine their density.
However, for a square domain spanned by n elements in each
direction, this would require n2 measurements whereas recon-
structing the field using p projections of n elements each, the
total number of measurements is np. When less precise data is
acceptable, such as for initial numerical model validation (the
authors’ target use-case), the minimum 2n measurements can
provide satisfactory aggregate information over the entire green
body slice - which is much more efficient than the original n2

measurements.

3.4. Strengths and weaknesses of 2-projection ART

Of course, the greater the number of projections the better the
accuracy of the reconstructed field. One of the greatest draw-
backs to only using 2 projections is the inability to detect field
characteristics at an inclined angle with respect to the projec-
tion directions[15]. For this purpose, this method is best used
when some a priori knowledge can be applied to the analysis
such that the projection directions are in line with the natural
orientation of the reconstructed field. This method has been
found to be able to exactly reproduce unimodal density fields
when principal axes are aligned with the projection directions
(see Figure 4). If a priori knowledge of the field is not avail-
able or the field has many local effects, additional projections
should be incorporated to reconstruct the structure with greater
accuracy.

4. Virtual Experiment

A virtual experiment is now presented with the purpose of
examining the efficacy of the two-projection algebraic recon-
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(a) Simulation
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(b) ART Reconstruction

Figure 5: A virtual experiment where a representative density field is extracted
from a ceramic powder compaction simulation and reconstructed from two or-
thogonal projections using multiplicative ART. The two-projection ART recon-
struction method adequately reconstructs the general trends of the simulated
density field, although it does smooth along the projection directions. Because
the method is insensitive to the magnitude of the density, the density field of
the simulated green body is normalized according to the average density of the
slice.

struction technique. The examination is performed by compar-
ing the reconstruction of a density field to a known solution pro-
duced by finite element software using a ceramic powder com-
paction model similar to that used by Stupkiewicz et al.[16].
In the simulated experiment, a ceramic powder is compacted
in a circular mold with a flat punch and a 10◦ inclined base to
form a green body in the shape of a truncated cylinder (such
as the sample depicted in Figure 1). The simulation was per-
formed using Abaqus Standard and a user material routine of
the above-mentioned model with 425 reduced-integration 3D
hexehedral elements for a full 3D simulation of the compaction
process. A representative transverse slice of the simulated green
body is used to generate two orthogonal projections with one of
the projections being in line with the only plane of symmetry.
The results of the reconstruction, as well as the simulated green
body density field, are presented in Figure 5.

For this virtual experiment, there is a consistent correlation
between the density isosurfaces of the simulation and recon-
struction but also a lack of curvature in the reconstruction that
is present in the simulated density field. Nevertheless, the re-
constructed density field sufficiently resembles the aggregate
simulated density field to the extent that the location, magni-
tude, and size of large-scale density variations can be identified
and compared with simulations to validate numerical models.

When using this density evaluation method to compare a
simulated density field to an experimental field, it is recom-
mended that both the simulation and the experiment are to be
reconstructed from projections and the resulting reconstructions
compared. In this way, the agreement between the simula-
tion and experiment can be assessed in the same reconstruction
space, subject to the same dissipation effects inherent to each
reconstruction technique in order to yield two images that can
be objectively compared. This allows for the case that the sim-
ulation accurately predicts the experimental density field but
that the reconstructed field does not exactly represent the actual
solution. As discussed in Section 3.3, in only the most patho-
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(g) Rotated Image
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Figure 4: A demonstration of the strengths and weaknesses of the 2-projection (vertical and horizontal) multiplicative algebraic reconstruction technique (ART).
The plots in the upper row are based on the function f (x, y) = e−(2x2+10y2) with the bottom row based on the function g(x, y) = 1.0 − f (x, y). As is evidenced by
(d) and (h), the 2-projection method cannot capture the superimposed rotations present in (c) and (g), respectively, as the principal axes of the function and the
projection directions do not coincide. Note: the reconstruction in (b) is an exact reconstruction of the image in (a).

logical instances will the reconstructed field exactly represent
the actual field, such as in Figure 4b. While the set of density
fields that satisfy the two projections is infinite, it is deemed
unlikely that both a simulation and experiment would have the
same projections with fundamentally different density fields.

5. Green Body Reconstruction

To complement the virtual experiment, the density analy-
sis technique was used to analyze the truncated-cylinder green
body depicted in Figure 1, with a diameter of 30.0mm, a
maximum height of 9.1mm, and an upper-face inclination
of 10◦. The green body was formed under a mean axial
stress of 120MPa, which is slightly more than the supplier-
recommended 100MPa forming pressure to attain a green den-
sity of 2.4g/cm3. The analysis took advantage of the symme-
try of the green body along the diameter, thereby yielding two
mirror-images of the sample. These two sections of the green
body were milled in perpendicular directions to give the mini-
mum two projections to perform the reconstruction.

The sample was milled in transverse slices with a thickness
of 1mm. Each transverse slice was partitioned into 1.5mm-wide
strips (one-half of the sample milled in one direction and the
other half in the perpendicular direction) and then progressively
milled the partitioned sections and weighed. After measuring
the projections of each transverse slice, the data can immedi-
ately be used to generate a reconstruction with a voxel size of
1.5mm × 1.5mm × 1.0mm.

During analysis, it was found that the milled strips that
contained relatively little mass were particularly sensitive to
the flaking of the sample during milling causing significant

Figure 6: A demonstration of the method to regularize the projections in the
presence of experimental variation (such as flaking) during the milling process.
The experimentally-measured mass can be converted to density by dividing by
projection-element volume (found by using sample geometry and milling path).
The density profile can then be smoothed by minimizing a mass-weighted root-
mean-squared error function while requiring total mass to be unchanged.
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variation in the calculated density for that piece. To over-
come this, a smoothing step of the transverse slice projections
was performed where the milled mass is transformed to den-
sity space and smoothed by minimizing a mass-weighted root-
mean-squared error function subject to conservation of mass
(see Figure 6). This gives more weight to the strips that had
more mass and, therefore, a more accurate density value. Ap-
plying this smoothing step to all the projections allows for re-
sampling of the projection data from the smoothed projections
to get a higher resolution reconstruction. The high-resolution
3D reconstruction of the green body can be found in Figure 7.

While two projections are unlikely to exactly reproduce the
density field, general predictions about the density field can still
be readily inferred from the reconstruction. From Figure 7, it
can be seen that the bulk of the green body has a density that is
approximately the reported green density for our alumina pow-
der (2.4g/cm3). There is also an area of much higher density,
approaching 2.9g/cm3, at the pinch point and that the other ar-
eas of higher density are more localized at the corners of the
inclined surface leaving a relatively lower density in the center.

6. Conclusion

A simple, destructive method has been presented for deter-
mining internal density fields of ceramic green bodies, using
only readily-available laboratory equipment. The method has
been demonstrated as being able to represent location, magni-
tude, and extent of large-scale density variations with sufficient
accuracy for initial numerical model validation using the min-
imum two projections. Virtual experiments and experimental
reconstructions have confirmed the utility of this method for
determining and comparing density fields of green bodies and
is now ready for use in research and industrial applications.
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