Crack Propagation in a Brittle Elastic Material With Defects

A two-dimensional asymptotic solution is presented for determination of the trajectory of a crack propagating in a brittle-elastic, isotropic medium containing small defects. Britleness of the material is characterized by the assumption of the pure Mode I propagation criterion. The defects are described by Pólya-Szegő matrices, and examples for small elliptical cavities and circular inclusions are given. The results of the asymptotic analysis, which agree well with existing numerical solutions, give qualitative description of crack trajectories observed in brittle materials with defects, such as porous ceramics.

1 Introduction

The analysis of failure mechanisms of brittle-composite materials has design implications in a broad range of contexts. These include defects—containing, porous, and particulate, or fiber-reinforced materials. Examples of these materials are: structural and traditional ceramics, which may contain flaws or pores, fibrous biological materials, porous rocks, porous high-strength metals at low temperature and ceramic or metal composites. In other materials, like concrete or certain rocks, stiff inclusions co-exist in a soft matrix with pores and microcracks. In this context, fracture propagation is the dominant failure mechanism at the macroscopic scale.

It is obvious that fracture propagation is affected by the presence of inhomogeneities, which modify the crack trajectory and, consequently, the toughness of the material. For instance, the toughening effect of a dilated porosity remains controversial (see, e.g., Claussen, 1976; and Duan et al., 1995 where the porosity consists of small cracks). In fact, on one hand, pores may act as stress concentrators and initiate strain localization and microcracking between cavities. On the other hand, pores may deviate the crack path from linearity and, when the crack tip intersects a cavity, this may produce a stress release. From the latter point of view, pores yield a shielding effect on crack propagation.

The above discussion elucidates the theoretical and practical relevance of developing analytical models capable of describing the fracture mechanisms of brittle materials containing voids or inclusions. This problem, numerically analyzed by Rubinstein (1986) and Rose (1986), is the focus of the present paper. In particular, an asymptotic solution is presented for the determination of the trajectory of a crack growing in an elastic-brittle isotropic material, under generally plane conditions. With the term “brittle,” we mean a material in which the fracture propagates according to the pure Mode I criterion or “criterion of local symmetry,” i.e., \(K_I = 0 \) (Banichuk, 1970; Goldstein and Salganik, 1974). Two perturbed solutions are employed, one of which concerns the modification of the near-tip fields due to a perturbation from rectilinearity in the crack trajectory. In the other perturbed solution, defects are introduced and the modification on the near-tip field is evaluated. The former analysis is similar to some extent to that presented by Cotterell and Rice (1980). The latter analysis was initiated by Movchan, Nazarov, and Pólyaaková (1991) and is based on the concept of the Pólya-Szegő (1951) matrix, which characterizes the effect of the inclusion.

The model described in this article makes possible to investigate the effects of a number of inclusions on the trajectory of a crack. It is assumed that the characteristic size of defects is small compared to the distance from the crack trajectory and no interaction takes place between the defects. Examples are presented where defects are described by circular elastic inclusions and elliptical voids. Results are shown to agree with those presented by Rubinstein (1986) and are qualitatively consistent with crack patterns in brittle materials.

2 Problem Formulation

2.1 Crack Geometry and Field Equations. A quasi-static semi-infinite plane crack is considered, smoothly curved in the portion extending from the tip to a reference point where the crack profile becomes rectilinear, as indicated in Fig. 1. With respect to a coordinate system having the origin in the reference point and the axis \(x \) tangent to the rectilinear crack profile, the crack tip has abscissa \(l \). If the curved portion of the crack is sufficiently regular and close to rectilinearity, it can be
treated as a perturbed straight crack. In this case, the crack geometry can be specified by introducing a smooth function \(h \) of \(x_1 \), which, multiplied by a perturbation parameter \(\alpha \), specifies the \(x_2 \)-coordinate of the curved portion of the crack. Therefore, the semi-infinite crack is described by the set \(M_\alpha(I) := \{(x_1, x_2); x_1 < I, x_2 = \alpha h(x_1)\} \), with \(0 < \alpha < 1 \). A defect is considered in the form of a cavity or an elastic inclusion, and is indicated by \(\Omega \). The position of the defect is to some extent arbitrary, in the sense that it can be placed in an arbitrary point, but the ratio between the diameter of the defect and the minimal distance from crack trajectory has to be small enough to allow the use of a perturbation technique. That will be clarified in the following. It is therefore assumed that \(\epsilon = \frac{1}{2} \text{diam} \Omega / \text{dist} (\Omega, M_\alpha) \ll 1 \).

The crack problem regards plane strain (or stress) deformation of linear elastic, isotropic materials, characterized by the Lamé constants \(\lambda, \mu \), for the matrix material, and \(\lambda_c, \mu_c \), for the inclusion.

Vectors \(u \) and \(u^{(0)} \), representing the displacement fields in the matrix and inside the defect, respectively, are required to satisfy the Lamé equations

\[
Lu = \mu \Delta u + (\lambda + \mu) \nabla \cdot u = 0,
\]

\(x \in \mathbb{R}^2 \setminus (\Omega \cup M_\alpha) \). \hspace{1cm} (1)

\[
L^{(0)}u^{(0)} = \mu_0 \Delta u^{(0)} + (\lambda_0 + \mu_0) \nabla \cdot u^{(0)} = 0,
\]

\(x \in \Omega \). \hspace{1cm} (2)

and the boundary conditions. These consist of the traction-free condition at the crack faces

\[
\sigma^{(a)}(u; x) = 0, \quad x \in M_\alpha^2.
\]

(3)

(where \(\sigma^{(a)} \) is the stress vector relative to the elementary area of unit normal \(n \) and of two interface conditions at the inclusion boundary

\[
\sigma^{(a)}(u; x) = \sigma^{(a)}(u^{(0)}; x), \quad u = u^{(0)}, \quad x \in \partial \Omega.
\]

(4)

In the case of a cavity, conditions (4) are replaced by the traction boundary condition

\[
\sigma^{(a)}(u; x) = 0, \quad x \in \partial \Omega_c.
\]

(5)

When the distance \(r \) from the crack tip tends to infinite, the displacement field is supposed to have the following asymptotic form:

\[
u(x) \sim K^*_\alpha r^{1/2} \Phi^{(a)}(\phi), \text{ as } r \to \infty.
\]

(6)

where the stress intensity factor \(K^*_\alpha \) is given, and the polar components of the vector function \(\Phi = (\Phi, \Phi') \) are specified by

\[
\Phi^{(a)}(\phi) = \frac{1}{4\mu r^{2\pi}} \left[(2\kappa - 1) \cos \frac{\phi}{2} - \cos \frac{3\phi}{2} \right],
\]

\[
\Phi^{(a)}(\phi) = \frac{1}{4\mu r^{2\pi}} \left[\sin \frac{3\phi}{2} - (2\kappa + 1) \sin \frac{\phi}{2} \right].
\]

(7)

where \(\kappa = (\lambda + 3\mu)/(\lambda + \mu) \) for plane strain and \(\kappa = (5\lambda + 6\mu)/(5\lambda + 2\mu) \) for plane stress.

2.2 Unperturbed Crack. The perturbation introduced by a defect on the near-tip crack fields is considered for a rectilinear crack \(M_\alpha \) (note that \(\alpha = 0 \) has been considered). For this problem, following Movchan et al. (1991) and Movchan and Movchan (1995) the displacement field near the crack tip can be represented as

\[
u(x) \sim v(x) + \epsilon^2 w(x),
\]

where \(v(x) = K^{(a)}(\phi) \) is the displacement field corresponding to a rectilinear crack in a plane without inclusion, and \(\epsilon^2 w \) represents the correction term associated with the perturbation field produced by the small defect \(\Omega \). The reason why the corrective term is second order in \(\epsilon \) can be appreciated by considering the Neumann boundary value problem of a homogeneous elastic isotropic solid containing a defect (Movchan and Movchan, 1995, Section 1.3). The vector field \(w \) satisfies

\[
\mathbf{L}w(x) = -\sum_{k=1}^{3} \left[[\nabla^{(0)}(\partial \Omega_c^{(k)})/\partial \Omega_c^{(k)} \mathcal{P}_a \mathbf{V}^{(0)}(\partial \Omega_c^{(k)}) \delta(x - \mathbf{x}^k)], \quad x \in \mathbb{R}^2 \setminus M_\alpha,
\]

where \(\mathbf{x}^k \) is the centre of the defect, and \(\delta \) the Dirac function) and the homogeneous traction boundary conditions on the crack faces

\[
\sigma^{(a)}(w; x) = 0, \quad x \in M_\alpha^2.
\]

(10)

In Eq. (9) \(\mathcal{P}_a \) are components of the Pólya-Szegő matrix of the defect and vectors \(\mathbf{V}^{(0)}(\partial \Omega_c) \) are defined as

\[
\mathbf{V}^{(1)}(\partial \Omega_c) := \left(\frac{\partial}{\partial x_1}, 0 \right), \quad \mathbf{V}^{(2)}(\partial \Omega_c) := \left(0, \frac{\partial}{\partial x_2} \right),
\]

\[
\mathbf{V}^{(3)}(\partial \Omega_c) := \left(\frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_1} \right).
\]

(11)

Detailed discussion related to the structure of the matrix \(\mathcal{P} \) will be given in Section 3.

2.3 Perturbation of the Crack Trajectory. We are now in a position to investigate the main problem, namely, perturbation of the crack trajectory induced by the presence of a defect. In the absence of defects, the crack would propagate rectilinearly under Mode I loading, a condition which trivially satisfies the criterion \(K_c = 0 \). The presence of a defect, even small, produces a perturbation in terms of a smooth deflection from linearity of crack trajectory.

Let us consider the asymptotic expansion of the displacement field near the tip of perturbed crack \(M_{\alpha} \). A local system of coordinates \(y \) can be introduced, which has the origin centered in the tip of the perturbed crack (i.e., in the point of coordinates \((t, \alpha h(t)) \)) and axis \(y_1 \) tangent to the crack trajectory at the crack tip (Fig. 1):

Transactions of the ASME
where \(\mathbf{y} \) is a system of coordinates translated with respect to \(\mathbf{x} \), in particular, \(\mathbf{y} = (y_1, y_2) = (x_1 - \ell, x_2) \).

In the polar coordinate system \(\mathbf{y}^* \) (Fig. 1), the asymptotic expansion of the displacement vector \(\mathbf{u} \), relative to the perturbed crack, can be represented as follows:

\[
\mathbf{u}(\mathbf{y}^*) = \sum_{j=0}^\infty r^{j/2} K_j(\alpha) \Phi_j^{(i)}(\phi),
\]

where \(K_j(\alpha) \sim K_j(\ell) + aK_j(\ell) \).

(13)

and a Taylor series expansion of (14) can be performed near \(\alpha = 0 \):

\[
\mathbf{u}(\mathbf{y}, \alpha) = \mathbf{u}(\mathbf{y}, 0) + \alpha \left[\frac{\partial \mathbf{u}(\mathbf{y}, \alpha)}{\partial \alpha} \right]_{\alpha=0} + O(\alpha^2). \tag{15}
\]

Therefore, using Eqs. (13), (14), Eq. (15) becomes

\[
\mathbf{u}(\mathbf{y}, \alpha) = \mathbf{u}(\mathbf{y}, 0) + \alpha \left[\left(\begin{array}{c} 0 \\ -h_1'(\ell) \\ 0 \end{array} \right) \right] + O(\alpha^2), \tag{16}
\]

where \(h_1(\ell) = h_1(\ell) \). The coefficient of the term multiplying \(\alpha \) in Eq. (16) can be written as

\[
\mathbf{u}^*(\ell) := -\frac{1 + \kappa}{4\mu} \int_{\partial C} h_1(\ell) r^{-121} \mathbf{Q}^*(\phi) + K_1(\ell) r^{-12} \mathbf{Q}^*(\phi) + \int_{\partial C} K_1(\ell) h_1(\ell) r^{-121} \mathbf{Q}^*(\phi), \tag{17}
\]

where the components of the vector function \(\mathbf{Q}^* \) are given by (7) and

\[
\mathbf{Q}^*_j(\phi) = \frac{1}{4\mu/(\ell)} \left[(1 - 2\kappa) \sin \phi + 3 \sin 3\phi \right],
\]

\[
\mathbf{Q}^*_j(\phi) = \frac{1}{4\mu/(\ell^2)} \left[3 \cos \phi - (1 + 2\kappa) \cos \phi \right],
\]

\[
\mathbf{Q}^*_j(\phi) = \frac{1}{4\mu/(\ell^3)} \left[(1 - 2\kappa) \sin 3\phi - 3 \sin \phi \right],
\]

\[
\mathbf{Q}^*_j(\phi) = \frac{1}{4\mu/(\ell^4)} \left[(2\kappa - 1) \cos \phi \right].
\]

The stress components associated with (17) exhibit an unphysical strong singularity, and this fact indicates the presence of the boundary layer in the vicinity of the crack tip. This

singularity may be eliminated in the way exposed in the following. First, let us introduce the weight function

\[
\xi^*_j(\lambda) := r^{-121} \mathbf{Q}^*(\phi),
\]

and therefore define

\[
w^*(\lambda) := u^*(\lambda) + \frac{1 + \kappa}{4\mu} h_1(\ell) K_1(\ell) \xi^*_1(\lambda),
\]

which satisfies the Lamé system (1) and the same boundary conditions on \(M^e \) as \(u^* \), but does not have a singularity at the crack tip (l, 0).

Let us consider the ring \(\mathcal{R}_o = \{ y: (1/R) \leq |y| = R \} \), surrounding the reference crack tip, and the integral

\[
\int_{\mathcal{R}_o} [\xi^*_j(\lambda) \cdot \mathbf{u}(\lambda) - u^*(\lambda) \cdot \mathbf{L}^*_j(\lambda)] d\lambda.
\]

If the defect is far enough from the reference crack tip, representation (8) holds and therefore

\[
\int_{\mathcal{R}_o} [\xi^*_j(\lambda) \cdot \mathbf{u}(\lambda) - u^*(\lambda) \cdot \mathbf{L}^*_j(\lambda)] d\lambda = \epsilon^2 \sum_{l=1}^{E_1} \mathcal{F}_l(\lambda, \mathbf{u}, \xi^*_j, \lambda) d\lambda.
\]

If we reconsider integral (21), apply the Betti formula, and take the limit when \(R \) tends to infinity, we obtain

\[
l_\infty \int_{\mathcal{R}_o} [\xi^*_j(\lambda) \cdot \mathbf{u}(\lambda) - u^*(\lambda) \cdot \mathbf{L}^*_j(\lambda)] d\lambda = \lim_{\lambda \to \infty} \left\{ \int_{\mathcal{S}_1} [\xi^*_j(\lambda) \cdot \mathbf{u}(\lambda) - u^*(\lambda) \cdot \mathbf{L}^*_j(\lambda)] d\lambda \right\}
\]

\[
= -\mu \sigma_{\phi z}(\lambda) \sigma_{\phi z}(\lambda) - a \sigma_{\phi z}(\lambda),
\]

\[
= \frac{1}{\sqrt{\pi}(1 + \kappa)} \left[(1 - 2\kappa) \cos \phi - 3 \sin \phi \right],
\]

\[
= \frac{1}{\sqrt{\pi}(1 + \kappa)} \left[(2\kappa - 1) \cos \phi \right].
\]

The stress components associated with (17) exhibit an unphysical strong singularity, and this fact indicates the presence of the boundary layer in the vicinity of the crack tip. This

singularity may be eliminated in the way exposed in the following. First, let us introduce the weight function

\[
\xi^*_j(\lambda) := r^{-121} \mathbf{Q}^*(\phi),
\]

and therefore define

\[
w^*(\lambda) := u^*(\lambda) + \frac{1 + \kappa}{4\mu} h_1(\ell) K_1(\ell) \xi^*_1(\lambda),
\]

which satisfies the Lamé system (1) and the same boundary conditions on \(M^e \) as \(u^* \), but does not have a singularity at the crack tip (l, 0).

Let us consider the ring \(\mathcal{R}_o = \{ y: (1/R) \leq |y| = R \} \), surrounding the reference crack tip, and the integral

\[
\int_{\mathcal{R}_o} [\xi^*_j(\lambda) \cdot \mathbf{u}(\lambda) - u^*(\lambda) \cdot \mathbf{L}^*_j(\lambda)] d\lambda.
\]

If the defect is far enough from the reference crack tip, representation (8) holds and therefore

\[
\int_{\mathcal{R}_o} [\xi^*_j(\lambda) \cdot \mathbf{u}(\lambda) - u^*(\lambda) \cdot \mathbf{L}^*_j(\lambda)] d\lambda = \epsilon^2 \sum_{l=1}^{E_1} \mathcal{F}_l(\lambda, \mathbf{u}, \xi^*_j, \lambda) d\lambda.
\]

If we reconsider integral (21), apply the Betti formula, and take the limit when \(R \) tends to infinity, we obtain

\[
l_\infty \int_{\mathcal{R}_o} [\xi^*_j(\lambda) \cdot \mathbf{u}(\lambda) - u^*(\lambda) \cdot \mathbf{L}^*_j(\lambda)] d\lambda = \lim_{\lambda \to \infty} \left\{ \int_{\mathcal{S}_1} [\xi^*_j(\lambda) \cdot \mathbf{u}(\lambda) - u^*(\lambda) \cdot \mathbf{L}^*_j(\lambda)] d\lambda \right\}
\]

\[
= \lim_{\lambda \to \infty} \left\{ \int_{\mathcal{S}_1} [\xi^*_j(\lambda) \cdot \mathbf{u}(\lambda) - u^*(\lambda) \cdot \mathbf{L}^*_j(\lambda)] d\lambda \right\}
\]

\[
= -\mu \sigma_{\phi z}(\lambda) \sigma_{\phi z}(\lambda) - a \sigma_{\phi z}(\lambda),
\]

\[
= \frac{1}{\sqrt{\pi}(1 + \kappa)} \left[(1 - 2\kappa) \cos \phi - 3 \sin \phi \right],
\]

\[
= \frac{1}{\sqrt{\pi}(1 + \kappa)} \left[(2\kappa - 1) \cos \phi \right].
\]
to the numerical results of Rubinstein (1986) referred to the influence of defects on the near-tip fields of a rectilinear crack.

If the pure Mode I criterion of fracture is adopted, the orientation of the crack has to be chosen in such a way that \(K_\mathrm{II}(a) = 0 \), and therefore

\[
K_\mathrm{II}(a) = \alpha K_\mathrm{II}^* (I) = 0, \tag{26}
\]

which can be substituted into Eq. (25) to get

\[
h'(l) = 2 \sum_{m=1}^{\infty} \int \Phi_n(x) \left(r^{-z/2} \Phi_n^* \right)^2, \tag{27}
\]

Equation (27) can be easily integrated to obtain the solution for the crack deflection function in the case when the center of the inclusion is placed at the generic point \((x_1^*, x_2^*)\):

\[
h(l) = \frac{4\mu}{x_2^*(k + 1)} \left(\cos \phi \mathcal{L}(\phi) \mathcal{P}(\phi) - \mathcal{L}(0) \mathcal{P}(0) \right), \tag{28}
\]

where \(\cos \phi = (x_1^* - l) \left((x_1^*)^2 + (x_2^*)^2 - 1 \right)^{-1/2} \), and

\[
\mathcal{L}(\phi) = \frac{1}{4\mu \sqrt{2\pi}} \cos \phi \left\{ \frac{k - 1 - 2 \sin \phi/2 \sin \phi/2}{2} \right\}, \tag{29}
\]

\[
\mathcal{T}(x) = \frac{\lambda + \mu}{8\pi \mu(\lambda + 2\mu)} \begin{pmatrix}
-2\kappa \ln \sqrt{x_1^2 + x_2^2} + \frac{2x_1^2}{x_1^2 + x_2^2} \\
\frac{2x_1 x_2}{x_1^2 + x_2^2} \\
-2\kappa \ln \sqrt{x_1^2 + x_2^2} + \frac{2x_2^2}{x_1^2 + x_2^2}
\end{pmatrix}. \tag{30}
\]

A Circular Inclusion. In the case of an elastic circular inclusion of radius \(R \), having Lamé constants \(\lambda_0, \mu_0 \), the outside-inclusion displacement field \(u = (u_1, u_2) \) can be represented, via complex Kolosov-Muskhelishvili (1953) potentials \(\varphi(z) \) and \(\psi(z) \), as

\[
u_1 + i\nu_2 = (2\mu)^{-1} [\kappa \varphi(z) - \bar{z} \bar{\psi}(z) - \bar{\psi}(z)]. \tag{31}
\]

where

\[
\varphi(z) = \alpha z + \frac{\gamma R}{z} \left(R - \frac{\mu}{\kappa \mu_0 + \mu} \right), \tag{32}
\]

\[
\psi(z) = \gamma z + \frac{2\mu (\kappa_0 - 1)}{z} \left(\frac{1}{\mu (\kappa_0 - 1) + 2\mu_0} + \frac{\gamma R}{z^2} \frac{R - \mu_0}{\kappa_0 \mu + \mu} \right). \tag{33}
\]

Constants \(\alpha \) and \(\gamma \) in Eq. (25) can be determined from the conditions at infinity. In particular, when the displacement field behaves like \(\psi_{\infty} + \) smaller terms, as \(|z| \rightarrow \infty \), it can be shown that

\[
\text{Transactions of the ASME}
\]

82 / Vol. 66, MARCH 1999
\[
\alpha = \frac{\mu}{\kappa - 1}, \quad \gamma = -\mu, \quad \text{for } j = 1,
\]
\[
\alpha = \frac{\mu}{\kappa - 1}, \quad \gamma = \mu, \quad \text{for } j = 2,
\]
\[
\alpha = 0, \quad \gamma = i\mu\sqrt{2}, \quad \text{for } j = 3. \quad (36)
\]

In addition to representation (34), the displacement field at infinity can be represented as a linear combination of vectors \(\mathbf{U}^{(j)} \) (30), plus smaller terms. The asymptotic expression (32) for the field \(\mathbf{W}^{(j)} \) can be rewritten via the complex variable \(z = x_1 + iz_2 \) in the form
\[
W^{(1)} + iW^{(2)} = P \left[\frac{\partial}{\partial z} [T_{11} + iT_{12}] + \frac{2}{\partial z^2} [T_{12} + iT_{13}] \right] + P \left[\frac{\partial}{\partial z} [-T_{22} + iT_{11}] + \left(\frac{\partial}{\partial z^2} [T_{12} - iT_{13}] \right) \right] + \frac{1}{\sqrt{2}} P \left[\frac{\partial}{\partial z} [iT_{11} + iT_{22}] \right] + \left(\frac{\partial}{\partial z^2} [2T_{12} + iT_{22} - T_{13}] \right) + O \left(\frac{1}{|z|^2} \right), \quad (37)
\]
where
\[
\mathbf{T} = \frac{\lambda + \mu}{8\pi\mu(\lambda + 2\mu)} \begin{pmatrix}
-2\kappa \ln|z| + \frac{z^2 + \xi^2 + 2\xi z}{2\xi^2} \\
\frac{z^2 - \xi^2}{2\xi z} \\
-2\kappa \ln|z| \\
\end{pmatrix}, \quad (38)
\]
is the complex variable representation of the Kelvin-Somigliana matrix.

Comparing relations (34) and (37), it is concluded that the Pólya-Szegő matrix for the given elastic circular inclusion can be expressed in the form
\[
\mathbf{P} = \frac{R^2}{4q} \begin{pmatrix}
\Theta & \Theta & 0 \\
\Theta & \Theta & 0 \\
0 & 0 & 0 \\
\end{pmatrix}, \quad (39)
\]
where
\[
q = \frac{\lambda + \mu}{8\pi\mu(\lambda + 2\mu)}, \quad \Theta = \frac{\mu_0 - \mu}{\kappa\mu_0 + \mu}, \quad \Xi = \frac{2\mu_0(\kappa - 1) - 2\mu(\kappa_0 - 1)}{\mu(\kappa_0 - 1) + 2\mu_0}. \quad (40)
\]

An Elliptical Cavity. In the case of an elliptical cavity in an isotropic elastic plane, we denote with \(a \) and \(b \) the large and small semi-axes of the ellipse, respectively, and with \(\theta \) the angle between the \(x_1 \)-axis and the largest axis of the ellipse. The conformal mapping of the exterior of the unit disk into the exterior of the elliptical cavity can be given as
\[
\omega(\xi) = \frac{a + b}{2} \left(\xi + m \frac{e^{i\theta}}{\xi} \right), \quad m = \frac{a - b}{a + b}. \quad (41)
\]
and therefore, the solution \(\mathbf{u} \), expressed via complex potentials, becomes
\[
u_1 + i\nu_2 = \left(2\mu \right)^{-1} \left[\kappa \varphi(\xi) - \frac{\omega(\xi)}{\omega'(\xi)} \right. \psi(\xi) - \varphi(\xi) \left]. \quad (42)
\]

Taking into account the condition at infinity and the traction-free boundary condition at the cavity boundary, the Pólya-Szegő matrix can be obtained in the following form (Movchan, 1992):
\[
\mathbf{P} = \frac{1}{4\mu} \left(a + b \right)^2 \pi(\lambda + 2\mu) \left(\begin{array}{ccc}
\Xi - \Theta & \Xi - \Theta & \Lambda \\
\Xi - \Theta & \Xi - \Theta & \Lambda \\
\Lambda & \Lambda & 2\Theta \\
\end{array} \right), \quad (43)
\]
where
\[
\Theta = \frac{2\mu^2}{\lambda + \mu}, \quad \Xi = (\lambda + \mu)(1 + m^2),
\]
\[
\Sigma = -4\mu\cos 2\theta, \quad \Lambda = -2\sqrt{2}\mu m \sin 2\theta. \quad (44)
\]

4 Interaction Between a Semi-infinite Crack and a Cavity. As a first application of the presented theory, we consider the case of interaction of a semi-infinite crack and an elliptical cavity \(\Omega \), with the largest axis inclined at the angle \(\theta \) to the \(x_1 \)-axis. The center of the ellipse is located at \((x_0^0, x_1^0)\). Substituting (43) into (28) we obtain
\[
H(l) = \mathcal{E}^* h(l) = \frac{R^2}{2\pi x_0^2} \left[\left(1 + m^2 \right) + \sqrt{z^2 + x_1^2} \right] \\
+ \frac{m^2}{2} \left(1 + \frac{z}{\sqrt{z^2 + x_1^2}} \right) \cos 2\theta \left(1 + \frac{\sqrt{z^2 + x_1^2}}{z} \right), \quad (45)
\]
where
\[
z = \frac{R}{\sqrt{(z_0^2)^2 + (l + x_0^2)^2}}, \quad R = a + b. \quad (46)
\]

It should be noted that conditions \(m = 0 \) and \(m = 1 \) correspond to the relevant cases of a circular void and of a Griffith crack, respectively.

The crack trajectories \(h(l) \), as obtained from (45), are reported in Fig. 2. In particular, the crack trajectory is plotted in Fig. 2(a) resulting from the interaction of a semi-infinite crack with an ellipse having the major axis parallel to \(x_1 \) and center at \((0, 1)\). Different aspect ratios are investigated. Figure 2(b) pertains to the case of a semi-infinite crack interacting with a Griffith crack inclined at different angles.

It should be noted that in the case of a circular cavity, \(m = 0 \), \(H(l) \) takes positive values for every \(l \). Therefore, a circular cavity always "attracts" a crack. In the case of an elliptical void, the situation is more complicated. In fact the trajectory of the crack is influenced by the orientation of the ellipse and

\[\text{Journal of Applied Mechanics} \quad \text{MARCH 1999, Vol. 66} / 83\]
Fig. 2(a) Elliptic cavity, with major axis parallel to the main crack. Results reported for different aspect ratios.

Fig. 2(b) Griffith crack at different inclinations

Fig. 2. Crack trajectory $h(l)$ versus crack-tip position l, resulting from interaction with a cavity.

by the aspect ratio a/b. In particular, the crack may suffer a slight repulsion, followed by a strong attraction (so that curves relative to Fig. 2(a) have a minimum followed by a maximum). In any case, the deflection at infinity always corresponds to attraction. This can be verified by observing that the limit $l \to +\infty$ of (28)

$$H_\infty = -\frac{\epsilon^2}{\kappa + 1} \left[L(0) P L(0) \right] = \frac{R^2}{x^2} (1 + m^2), \quad (46)$$

is always positive, the dipole matrix P being negative definite for any cavity of finite dimension. Moreover, H_∞ increases when parameter m increases (Fig. 2(a)). This means that the deflection due to attraction with a thin ellipse is greater than the deflection produced by a circular cavity with diameter equal to the crack length.

Note from Fig. 2(b), that for any orientation of the Griffith crack, all crack trajectories intersect at the point corresponding to $l = 0$. Moreover, $H(0) = H_\infty$ and therefore the crack deflection at infinity is independent of the orientation of the small defect. However, the change of the angle θ affects the shape of the crack trajectory in the vicinity of the origin.

A SEM photograph is reported in Fig. 3(a) of a crack path induced by Vicker indenter in a sample of porcelain stoneware. This particular ceramic contains a dilute concentration of near-ellipsoidal voids. These voids have been modeled as ellipses in Fig. 3(b), where the crack trajectory has been obtained using the solution developed above. Obviously, certain approxima-

tions of the model may be anticipated. In particular, interactions between voids has been neglected; moreover, the assumption of small ratio between void dimension and distance from the crack tip is often forced. Perhaps more important, the model refers to a situation of plane strain, whereas the physical problem may be three-dimensional. However, we note from Fig. 3 that, in spite of all the approximations, the mathematical model gives an excellent description of the physical situation.

In closure of this section, a comparison is presented of the theory developed in this article to numerical solution of the singular integral equation for the complex crack opening given by Rubinstein (1986). To this purpose, $h'(l) = 0$ is considered in Eq. (25), which gives the the normalised Mode II stress intensity factor in the case when the unperturbed state corresponds to the Mode I load (characterized by the stress intensity factor K_I^*)

$$K_{II}/K_{II}^* \sim \frac{R^2}{\rho^2} \sum_{j \neq 1}^3 P_j \mathcal{F}_j(r, \phi), \quad (47)$$

with (r, ϕ) being polar coordinates of a small defect.
Comparison with Rubinstein’s results is reported in Fig. 4(a) and (b), where the cases of a Griffith crack and a circular cavity are considered, respectively. Note that the Mode II normalised stress intensity factors are reported versus ϕ, the angle of orientation of the position vector relative to the small defect (Fig. 1). Obviously, since (47) is an approximate asymptotic formula, a discrepancy with the numerical results of Rubinstein can be expected. The error is however quite small and the results of explicit asymptotic analysis show the right qualitative behaviour of the stress intensity factor as a function of the angular variable ϕ.

5 Interaction Between a Semi-infinite Crack and a Circular Elastic Inclusion

In the case of a circular inclusion, the Pólya-Szegö matrix P is given by (39). Consequently, formula (28) gives

![Graphs showing crack trajectory h(l) versus crack-tip position l, resulting from interaction with an elastic circular inclusion; (a) inclusion more rigid than the matrix, (b) inclusion less rigid than the matrix, (c) and (d) cases in which P is indefinite.](image)
\[H(l) = \varepsilon^2 h(l) \]
\[= \frac{R^2}{2x^2} \left[\left(z^2 + z - 2 \right) \frac{\mu_0 (\kappa - 1) - \mu (\kappa_0 - 1)}{\mu (\kappa - 1) + 2\mu_0} \right. \]
\[+ \left. (z - z_0^3) \frac{\mu_0 - \mu}{\kappa \mu_0 + \mu} \right], \quad (48) \]

where \(R \) is the radius of the inclusion and
\[z = \frac{l + x^2}{\sqrt{(x^2)^2} + (-l + x^2)^2}. \]

In the particular case when \(\mu_0 = 0 \), Eq. (48) reduces to Eq. (45) with \(m = 0 \), which corresponds to the case of a circular cavity. In plain strain, the Polyá-Szego matrix \(P \) of a circular inclusion is positive definite when
\[\frac{\mu_0}{\mu} > 1 \quad \text{and} \quad \frac{\lambda_0 + \mu_0}{\lambda + \mu} > 1, \quad (49) \]

and is negative definite when the inequalities (49) are both reversed. Otherwise, the matrix \(P \) is indefinite.

The crack deflection at infinity is given by
\[H_s = \varepsilon^2 h_s = \frac{R^2}{x^2} \left[1 - \frac{\mu_0 (\kappa + 1)}{2\mu_0 + (\kappa_0 - 1)\mu} \right], \quad (50) \]

Crack trajectories \(h(l) \) relative to the interaction of a semi-infinite crack with an elastic circular inclusion centered at \((0, 0) \) are reported in Fig. 5, for different values of elastic parameters. It can be noted that the defect tends to attract the crack in the case of an inclusion less rigid than the matrix (Fig. 5(a)), whereas in the opposite case of an inclusion more rigid than the matrix, the crack tends to be repelled by the defect (Fig. 5(b)). Figures 5(c) and (d) refer to cases in which matrix \(P \) is indefinite. Note in this case that a set of parameters can be chosen, for which the deflection at infinity is equal to zero.

6 Conclusions
Application of perturbative techniques to the problem of fracture propagation in an elastic material has been shown to be relevant in obtaining approximate solutions of interaction of a semi-infinite crack with defects.

Accepting the hypotheses of noninteracting defects and small ratio between defect diameter and distance to the crack, an analytical solution for the crack trajectory has been presented. This solution gives qualitative information on crack path in brittle materials. In particular, inclusions less rigid than the matrix generally "attract" the crack, whereas an opposite effect is observed in the case of inclusions more rigid than the matrix. In conclusion, a model has been presented to obtain the shape of crack trajectory as influenced by number, position, form, and elastic constants of the defects.

Acknowledgments
The authors would like to thank Prof. J.R. Willis (Cambridge University) for helpful discussions and Dr. A. Tucci and Dr. L. Esposito (Ceramic Centre, Bologna) for assistance with the experiment. M.V. acknowledges the financial support of the TMR European fund (Contit: ERCHRXCT930383) and is grateful to Bath University (School of Mathematical Sciences) for provision of computing facilities. D.B. and M.V. acknowledge the financial support of Italian MURST 60%.

References