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1 Introduction

The analysis of failure mechanisms of brittle-composite materi-
als has design implications in a broad range of contexts. These
include defects—containing, porous, and particulate, or fiber-rein-
forced materials. Examples of these materials are: structural and
traditional ceramics, which may contain flaws or pores, fibrous
biological materials, porous rocks, porous high-strength metals at
low temperature and ceramic or metal composites. In other materi-
als, like concrete or certain rocks, stiff inclusions co-exist in a
soft matrix with pores and microcracks. In this context, fracture
propagation is the dominant failure mechanism at the microscale.

It is obvious that fracture propagation is affected by the presence
of inhomogeneities, which modify the crack trajectory and, conse-
quently, the toughness of the material. For instance, the toughening
effect of a diluted porosity remains controversial (see, e.g.,
Claussen, (1976) and Duan et al. (1995) where the porosity con-
sists of small cracks). In fact, on one hand, pores may act as stress
concentrators and initiate strain localization and microcracking
between cavities. On the other hand, pores may deviate the crack
path from linearity and, when the crack tip intersects a cavity, this
may produce a stress release. From the latter point of view, pores
yield a shielding effect on crack propagation.

The above discussion elucidates the theoretical and practical
relevance of developing analytical models capable of describing
the fracture mechanisms of brittle materials containing voids or
inclusions. This problem, numerically analyzed by Rubinstein
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Brittleness of the material is characterized by the assumption of the pure Mode |
propagation criterion. The defects are described by Polya-Szegd matrices, and exam-
ples for small elliptical cavities and circular inclusions are given. The results of the
asymptotic analysis, which agree well with existing numerical solutions, give qualita-
tive description of crack trajectories observed in brittle materials with defects, such
as porous ceramics.

(1986) and Rose (1986), is the focus of the present paper. In
particular, an asymptotic solution is presented for the determination
of the trajectory of a crack growing in an elastic-brittle isotropic
material, under generalized plane conditions. With the term *‘brit-
tle’” we mean a material in which the fracture propagates according
to the pure Mode I criterion or “‘criterion of local symmetry,”’
ie., K; = 0 (Banichuk, 1970; Goldstein and Salganik, 1974).
Two perturbed solutions are employed, one of which concerns
the modification of the near-tip fields due to a perturbation from
rectilinearity in the crack trajectory. In the other perturbed solution,
defects are introduced and the modification on the near-tip field
is evaluated. The former analysis is similar to some extent to that
presented by Cotterell and Rice (1980). The latter analysis was
initiated by Movchan, Nazarov, and Polyakova (1991) and is
based on the concept of the Polya-Szegt (1951) matrix, which
characterizes the effect of the inclusion.

The model described in this article makes possible to investi-
gate the effects of a number of inclusions on the trajectory of
a crack. It is assumed that the characteristic size of defects is
small compared to the distance from the crack trajectory and
no interaction takes place between the defects. Examples are
presented where defects are described by circular elastic inclu-
sions and elliptical voids. Results are shown to agree with those
presented by Rubinstein (1986) and are qualitatively consistent
with crack patterns in brittle materials.

2 Problem Formulation

2.1 Crack Geometry and Field Equations. A quasi-
static semi-infinite plane crack is considered, smoothly curved
in the portion extending from the tip to a reference point where
the crack profile becomes rectilinear, as indicated in Fig. 1.
With respect to a coordinate system having the origin in the
reference point and the axis x; tangent to the rectilinear crack
profile, the crack tip has abscissa [. If the curved portion of the
crack is sufficiently regular and close to rectilinearity, it can be
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Q
reference crack, M,

Fig. 1 Crack geometry

treated as a perturbed straight crack. In this case, the crack
geometry can be specified by introducing a smooth function %
of x;, which, multiplied by a perturbation parameter «, specifies
the x;-coordinate of the curved portion of the crack. Therefore,
the semi-infinite crack is described by the set M,(I) := {(x,,
X)) x < 1, x» = ah(x,)}, with 0 < o« < 1. A defect is
considered in the form of a cavity or an elastic inclusion, and
is indicated by .. The position of the defect is to some extent
arbitrary, in the sense that it can be placed in an arbitrary point,
but the ratio between the diameter of the defect and the minimal
distance from crack trajectory has to be small enough to allow
the use of a perturbation technique. that will be clarified in the
following. It is therefore assumed that € = 1 diam Q,/dist (2,
M, < 1.

The crack problem regards plane strain (or stress) deforma-
tion of linear elastic, isotropic materials, characterized by the
Lamé constants \, y, for the matrix material, and Ao, uo, for
the inclusion.

Vectors u and u'®, representing the displacement fields in
the matrix and inside the defect. respectively, are required to
satisfy the Lamé equations

Lu:= pgAu+ (N + )VV-u =0,

x € RINQ, UM, (1)

L@ = 4oAu® + (Ag + po)VV - 0@ = 0,
xeQ, (2)

and the boundary conditions. These consist of the traction-free
condition at the crack faces
o™ (u:x)=0, x&M:, (3)
(where o ‘™ is the stress vector relative to the elementary area
of unit normal n) and of two interface conditions at the inclusion
boundary
c™u:x) =™ x), u=u?® x€80. 4
In the case of a cavity, conditions (4) are replaced by the
traction boundary condition
o™ u;x) =0, x & 09.. (5)
When the distance r from the crack tip tends to infinite, the
displacement field is supposed to have the following asymptotic
form:

u(x) ~ K7 r'*®'(¢), as r—w, (6)
where the stress intensity factor K7 is given, and the polar
components of the vector function ®' = (®/, &%)’ are specified
by
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1 ¢ 3¢
Q) = 4#\/27_ ':(ZK - 1) cos 5 cos 7] ,

oL(p) = 4!“1/% Iisin% — (2 + 1) sin %] . (D

where k = (A + 3p)(X\ + p)~! for plane strain and « = (5A +
6u) (3N + 2u) " for plane stress.

2.2 Unperturbed Crack. The perturbation introduced by
a defect on the near-tip crack fields is considered for a rectilinear
crack M, (note that « = 0 has been considered). For this prob-
lem, following Movchan et al. (1991) and Movchan and Mov-
chan (1995) the displacement field near the crack tip can be
represented as

(8)

where v(x) = K;r'*®/( ) is the displacement field correspond-
ing to a rectilinear crack in a plane without inclusion, and e*w
represents the correction term associated with the perturbation
field produced by the small defect 2,. The reason why the
corrective term is second order in € can be appreciated by con-
sidering the Neumann boundary value problem of a homoge-
neous elastic isotropic solid containing a defect (Movchan and
Movchan, 1995, Section 1.3). The vector field w satisfies

u(x) ~ v(x) + e*w(x),

Lw(x) = ~ 2 [(Vi5on) V(X) kexPiV (Bion 6(x — x°),
k=1

X € R\M,, (9)
(where x is the centre of the defect, and & the Dirac function)
and the homogeneous traction boundary conditions on the crack
faces
o ™(w:x)=0, x€& M;. (10)
In Eq. (9) P, are components of the Pélya-Szegd matrix of
the defect and vectors V (4,4, are defined as

0 0
Voo :={ 0% |, Vs = AE
. 0 Ox;
.
1| Ox
V%;ax»:‘/?z- B . (11)
Ox,

Detailed discussion related to the structure of the matrix P
will be given in Section 3.

2.3 Perturbation of the Crack Trajectory. We are now
in a position to investigate the main problem, namely, perturba-
tion of the crack trajectory induced by the presence of a defect.
In the absence of defects, the crack would propagate rectilin-
early under Mode I loading, a condition which trivially satisfies
the criterion K; = 0. The presence of a defect, even small,
produces a perturbation in terms of a smooth deflection from
linearity of crack trajectory.

Let us consider the asymptotic expansion of the displacement
field near the tip of perturbed crack M,. A local system of .
coordinates y“ can be introduced, which has the origin centered
in the tip of the perturbed crack (i.e., in the point of coordinates
(I, @h(l))) and axis y{ tangent to the crack trajectory at the
crack tip (Fig. 1):
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a_( 1 ozh’(l)) _( 0 > "
Yy 1 P ay) P

where y is a system of coordinates translated with respect to x,
in particular, y = (¥, ¥2) = (x; = I, x»).

In the polar coordinate system y* (Fig. 1), the asymptotic
expansion of the displacement vector u, relative to the perturbed
crack, can be represented as follows:

u(y®) ~ X rlPK(a)® (e,

=l

Ki(a) ~ K(I) + aK[ (1), (13)

where quantities evaluated in [ are referred to the unperturbed
problem, so that Kj;(/) = 0 by definition.

Moreover. displacement u(y®) may be represented in the
system y through a rotation, i.e.,

1 —ah'(l)

ah' (1) 1 (14)

u(y, a) = < >u(y“),

and, a Taylor series expansion of {14) can be performed near
a =0

du(y, a)

O(a?).
o + O(a®)

a=0

u(y,a)=u(y,0) + « (15)

Therefore, using Eqs. (13), (14). Eq. (15) becomes

e ")
u(y,a)=u(y,0) +a v(y)

h'({) 0
du ay¢ L Ou Oy du 9K, (a)
vy O |, ' Ng Oa oy OK(a) da |,

ou 9K, ()

- 0Ky (a) Oa } * Ole?). (16)

a=0
where v(y) is the same of Eq. (8).

The coefficient of the term multiplying « in Eq. (16) can be
written as

W) = = SRR 6) + K Dr e )
+ [K;,(o - %K,(nh'(z)]r“?@"(m, (17)

where the components of the vector function ¥ are given by
(7) and

) = lp— (1—2K)sin9+?>sin& ,
427 2 2

/2

DY) = 4;” [3 cos% ~ (1 + 2k) cos (—?] .

V2% 2
i = ———1 -~ 2 1 ﬁ _— é
V(o) v"g;(l o [(1 2k) sin 5~ sin 2:| .
i . —1___ _ éié _ ?
\I/as(tﬁ)—v,gr—(l o |:(2K 1) cos 5 cosz] . (18)

The stress components associated with (17) exhibit an un-
physical strong singularity, and this fact indicates the presence
of the boundary layer in the vicinity of the crack tip. This
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singularity may be eliminated in the way exposed in the follow-
ing. First, let us introduce the weight function

Li(y) = 1),

and therefore define

(19)

1+«

wH(y) = u’(y) + RDKADE (y),  (20)

which satisfies the Lamé system (1) and the same boundary
conditions on M7 as u’, but does not have a singularity at the
crack tip (/, 0).

Let us consider the ring =; = {y: (1/R) = |ly|| = R}.
surrounding the reference crack tip, and the integral

f ["(y)- Lu(y) — u(y)- LL"(y)14dy. (2D
Zp/Mq

If the defect is far enough from the reference crack tip, repre-
sentation (8) holds and therefore

J.: [L7(y) Lu(y) — u(y)- Lg"(y))dy

Zp\My

= —Ezf [§” Z [(V:{)’/‘B_v)):v]y:y“ jkvzf))/(‘)y)]
ZR\My

Jh=1
X8y = yo)dy = ¢ 3 PyFu(v, 0" ¥%). (22)
Jk=1
where
Fuv, Ty 1= (Vo )V VELL(¥%). (23)
If we reconsider integral (21). apply the Betti formula, and

take the limit when R tends to infinity, we obtain

lim [L7(y)- Lu(y) — u(y)- LL(v)ldy

Roee o Zpnp,

= lim {f [{Yo,.(u) + Lhouu) = uo, (L9
(".

R

1

1y0,6(L"Y1ds — f (8o, (u(y. 0) + awi(y))
Cs

+ Lhog(u(y, 0) + awX(y)) — (u.(y, 0)
+ awi(yNo. (L") - (ugly. 0)

+ awl(y))o.L")]ds + Zf [{Ven(u)
= Y My

+ {on(n) - won (" - M:Jzz(cu)]ds}

=0+ a{sh (DK() = Ki(D)} + 0. (24)
where C(R) = {y:llyll = R} and C, = {y:]ly| = I/R}.

Note that in the integral along C,, the field u corresponds to
(6), whereas in the integral along C, the approximation (17),
regularized via the weight function, is used. Finally, the integral
along M, is null because of the traction free boundary condi-
tions. Matching (24) with (22) it is concluded that & = €2, and
the derivative of K, is evaluated in the form

Ky(D) = KD (1)

_ 2 :ijf’k(r—ll?“l'lll VHZQI; yO)] (25)

Jk=1

Note that if the crack remains straight, i.e., if 4 = 0, relation
(25) can be used to compare the present asymptotic solution
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to the numerical results of Rubinstein (1986) referred to the
influence of defects on the near-tip fields of a rectilinear crack.

If the pure Mode I criterion of fracture is adopted, the orienta-
tion of the crack has to be chosen in such a way that X (a) =
0, and therefore

Ku(a) ~ aKy(l) = 0, (26)
which can be substituted into Eq. (25) to get
3
h’(l) =2 z 'J’,k}},‘(r‘“z\ll”, r1/2§l; yO) (27)

jk=1

Equation (27 ) can be easily integrated* to obtain the solution
for the crack deflection function in the case when the center of

and Movchan and Serkov (1991). In this section we briefly
discuss the definitions and give explicit representation for
the dipole matrices corresponding to circular inclusions and
elliptical cavities.

Definitions. Let us go back to the problem of an infinite
plane with a finite inclusion or cavity €., presented in Section
2.2. In that section, the unperturbed, i.c., without defect solution
was identified with the solution corresponding to a static recti-
linear crack in a plane. In the case of a plane with a defect, the
solution can be represented as a linear combination of the vec-
tors UY (j = 1. 2, 3), satisfying the homogeneous Lamé system
and admitting the representation

the inclusion is placed at the generic point (x9, x3): UY(x) = VI + WY(x), (30)
B = =2 (cos 9L1($)PL(S)
Bk + D) where
- L(OPLOYY, (28) VO = (x,0), V& = (0, 1),

where cos ¢ = (x3 — D[(xD?* + (x§ — D172, and?

VO =270, ), 31)
i ® T (x2, X)) (
7 ’TCOSE k—~1 —25m531n—7—
i - and the vector field W', decaying at infinity, can be expressed
as
L) = 1,—cos£[x~l+25in?sin3—d>J
4uN2w 2 2 2 5
WY = 3 PV iBa] T(x) + O(]x]| 7). (32)
. 3d k=1
—=sin ¢ cos Y Apart from factor €? which is now included in P, this matrix
dpim is the Polya-Szeg6 matrix defined in Section 2.2, whereas T is
(29) the Kelvin-Somigliana matrix (Fichera, 1972) defined as
2 2 x1 X
-2k InVxi + x3 + 721’1 - %
+ X7+ x3 X7+ x3
T(x)= — K& ! ‘ q (33)
(N + 2p) 2x1x, s 2x3
— -2k InVx; + x5 + — =
X7 + x3 Xxi + x3

It may be important to remark that the problem of the
interaction of a crack with more than one defect can be
solved in a straightforward way in the present framework,
when it is assumed that defects do not interact. In particular,
when a number of defects is considered, their effect consists
in a modification of Eq. (8), where the sum of the perturba-
tizve terms relative to all defects replaces the single term
€°wW.

3 The Polya-Szegé Matrices

The PGlya-Szegd matrix P characterizes the morphology
of the inclusion and its elastic properties. The properties of
the dipole tensors for boundary value problems related to
the Laplacian were given by Pélya and Szegs (1951). For
problems of elasticity, the dipole tensors were analyzed by
Zorin et al. (1988), Babich et al. (1989), Movchan (1992),

* The following auxiliary identity may be helpful in the integration

du SR

"_
¢ K+ 1 Oy

* It may be noted that Cartesian components of the vector £ are given by

L=V o) (7707 (6))) 4=y
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A Circular Inclusion. In the case of an elastic circular
inclusion of radius R, having Lamé constants \g, yo. the out-
side-inclusion displacement field u = (u,, u,) can be repre-
sented, via complex Kolosov-Muskhelishvili (1953) potentials
@(z) and ¥(z2), as

u + iy = (2p) kp(z) — 29" (2) — Y], (34)
where
TR? —
o(z) = az + - o= B
Iz Ko t i
Re (a)R* 2uo(k = 1) = 2u(ke = 1)
Z) = vz +
v =y z o = 1) + 240
— 4 —
LI ez i s
7 Kot p

Constants « and ¥ in Eq. (35) can be determined from the
conditions at infinity. In particular, when the displacement field
behaves like V> + smaller terms, as jjx]| = o, it can be shown
that
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s ¥=-—p for j=1,

, y=u for j=2,

a=0, y=ip2, for j=3. (36)

In addition to representation (34), the displacement field at
infinity can be represented as a linear combination of vectors
UY (30), plus smaller terms. The asymptotic expression (32)
for the field W' can be rewritten via the complex variable z
= x, + ix» in the form

wo s n2

. o
2 [Ty + iT2] + '6_:'_

[Ty + iTu])

Io} . 0 .
+ ?ﬂ(_ [=To + iT2] + <—_[T22 - 1T12]>
0z 0z

1 e,
+ ‘/_5 ?13('8—_ [iT\ + iT3]

—_

+ (2*[27‘12 + (T — T11)]> + 0( 2) . (37)
oz [z

w(f)
w'(€)

uy + iy = <2u)"[w<§> - 0 (6) —@] . (42)

Taking into account the condition at infinity and the traction-
free boundary condition at the cavity boundary, the Pélya-Szego
matrix can be obtained in the following form (Movchan®,
1992):

p-_L (a + by m(\ + 2u)
4u

ZE+0+3X E=-0 A
x E-0 E+0-3 A, @3
A A 20
where
2’
O=—""— E=(\+u(l+m),
N+ ( ) m)
T = ~dpmcos20, A=-22umsin20.  (44)

4 Interaction Between a Semi-infinite Crack and a
Cavity

As a first application of the presented theory, we consider
the case of interaction of a semi-infinite crack and an elliptical

where cavity €, with the largest axis inclined at the angle 6 to the x;-
2+ + 27 -7
-2« In |z] + _‘_—z“ —
B N+ 2z7 2izZ (38)
8mu(\ + 2u) -7 acn |2 2+ f -2z |
2iz7 27

is the complex variable representation of the Kelvin-Somigliana
matrix.

Comparing relations (34) and (37), it is concluded that the
Pélya-Szegd matrix for the given elastic circular inclusion can
be expressed in the form

R? =+0 E-0 0
P=—\|E2-06 E+0 0 s (39)
4q 0 0 20
where
= A+ _ Mo~ H
8Tu(N + 2) Kito + 1

—
—

1 2u(k— 1) = 2u(ke — 1)
Tk =12 ko= 1)+ 280

An Elliptical Cavity. In the case of an elliptical cavity in
an isotropic elastic plane, we denote with @ and b the large and
small semi-axes of ellipse, respectively, and with 6 the angle
between the xj-axis and the largest axis of the ellipse. The
conformal mapping of the exterior of the unit disk into the
exterior of the elliptical cavity can be given as

a+b< em) a-b
E+m—}, m=
2 3 2+ b

(40)

w(§) = , (41

and therefore, the solution u, expressed via complex potentials,
becomes
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axis. The center of the ellipse is located at (x7, x3). Substituting
(43) into (28) we obtain

o

H(l) = eh(l) = 21;

+ m(1 + z) + 2m cos 26(1 + 2z2)(1 — z%)

200 +m*) —z2(2 +z - 2*

— 2m sin 26(2z — 1)(1 + V1 = z%)], (45)
where
— +x0 a+b
=7 0y2 - 0427 R= -
V(XD + (=1 + 2D 2

It should be noted that conditions m = 0 and m = 1 corre-
spond to the relevant cases of a circular void and of a Griffith
crack, respectively.

The crack trajectories 2(!), as obtained from (45), are re-
ported in Fig. 2. In particular, the crack trajectory is plotted in
Fig. 2(a) resulting from the interaction of a semi-infinite crack
with an ellipse having the major axis parallel to x; and center
at (0, 1). Different aspect ratio are investigated. Figure 2(b)
pertains to the case of a semi-infinite crack interacting with a
Griffith crack inclined at different angles.

It should be noted that in the case of a circular cavity, m =
0, H(!) takes positive values for every /. Therefore, a circular
cavity always ‘‘attracts’’ a crack. In the case of an elliptical
void, the situation is more complicated. In fact the trajectory
of the crack is influenced by the orientation of the ellipse and

* Note that in the formula analogous to (43) of the paper by Movchan (1992),
the \/i factor was missed in the term A.
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-4.00 000 4.00

Fig. 2(a) Elliptic cavity, with major axis parallel to the main crack. Re-
sults reported for different aspect ratios.
300

70 ‘x A, !

-4.00 Q.00 4.00

Fig. 2(b) Griffith crack at different inclinations

Fig. 2 Crack trajectory h(/) versus crack-tip position /, resulting from
interaction with a cavity

by the aspect ratio a/b. In particular, the crack may suffer a
slight repulsion, followed by a strong attraction (so that curves
relative to Fig. 2(a) have a minimum followed by a maximum).
In any case, the deflection at infinity always corresponds to
attraction. This can be verified by observing that the limit / —
+® of (28)

- Loy = ey, 6)
Kk + 1 X2

I1m =
is always positive, the dipole matrix P being negative definite
for any cavity of finite dimension. Moreover, H.. increases when
parameter m increases (Fig. 2(a)). This means that the deflec-
tion due to interaction with a thin ellipse is greater than the
deflection produced by a circular cavity with diameter equal to
the crack length.

Note from Fig. 2(b), that for any orientation of the Griffith
crack, all crack trajectories intersect at the point corresponding
to [ = 0. Moreover, H(0) = H.. and therefore the crack deflec-
tion at infinity is independent of the orientation of the small
defect. However, the change of the angle § affects the shape of
the crack trajectory in the vicinity of the origin.

A SEM photograph is reported in Fig. 3(a) of a crack path
induced by Vicker indenter in a sample of porcelain stoneware.
This particular ceramic contains a dilute concentration of near-
ellipsoidal voids. These voids have been modeled as ellipses in
Fig. 3(b), where the crack trajectory has been obtained using
the solution developed above. Obviously, certain approxima-
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tions of the model may be anticipated. In particular, interactions
between voids has been neglected; moreover, the assumption
of small ratio between void dimension and distance from the
crack tip is often forced. Perhaps more important, the model
refers to a situation of plane strain, whereas the physical prob-
lem may be three-dimensional. However, we note from Fig. 3
that, in spite of all the approximations, the mathematical model
gives an excellent description of the physical situation.

In closure of this section, a comparison is presented of the
theory developed in this article to numerical solution of the
singular integral equation for the complex crack opening given
by Rubinstein (1986). To this purpose, 2’ (I) = 0 is considered
in Eq. (25), which gives the the normalised Mode II stress
intensity factor in the case when the unperturbed state corre-
sponds to the Mode I load (characterized by the stress infinity
factor K7)

2 3

« R
K,/ K7 ~ —rj 2 'R‘kf}k('%‘ﬁ)’

k=1

(47)

with (7, ¢) being polar coordinates of a small defect.

Fig. 3(a) SEM photograph of a crack in a porcelain stoneware

6f
H(D)|
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Fig. 3(b) Model prediction
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Fig. 4 Comparison with Rubinstein’s resuits, Mode Il normalized stress intensity
factor versus defect position &; (a) interaction with a Griffith crack, (b) interaction

with a circular cavity

Comparison with Rubinstein’s results is reported in Fig.
4(a) and (b), where the cases of a Griffith crack and a
circular cavity are considered, respectively. Note that the
Mode II normalised stress intensity factors are reported ver-
sus ¢, the angle of orientation of the position vector relative
to the small defect (Fig. 1). Obviously, since (47) is an
approximate asymptotic formula, a discrepancy with the nu-
merical results of Rubinstein can be expected. The error is
however quite small and the results of explicit asymptotic

1.60
()

080

040

0.00

A(l)
0.10

010 Lol KT
| .
s x=2 i
R/u=lS ﬁ
o2l ‘
400 0.00 4.00

analysis show the right qualitative behaviour of the stress
intensity factor as a function of the angular variable ¢.

5 Interaction Between a Semi-infinite Crack and a
Circular Elastic Inclusion

In the case of a circular inclusion, the Pélya-Szego matrix P
is given by (39). Consequently, formula (28) gives

000
()

£20

040

060

-4.00

()
010

.- Lol KA

A p et

boopsu=ls ‘
-4.00 0.00 4.00

Fig. 5 Crack trajectory h(/) versus crack-tip position /, resuiting from interaction with
an elastic circular inclusion; (a) inclusion more rigid than the matrix, {b) inclusion less
rigid than the matrix, (¢) and {d) cases in which P is indefinite.
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H) = e*h(D)

R2
= [(z2+z—

" 2)/10(K—1)—/t(f<o—1)
2x3

wro = 1) + 2pg

+ (2 - 23)u:| , (48)
Kio + f

where R is the radius of the inclusion and

— + x9
Vx2E + (=1 + x9?

7 =

In the particular case when p, = 0, Eq. (48) reduces to Eq.
(45) with m = 0, which corresponds to the case of a circular
cavity. In plain strain, the Pélya-Szego matrix P of a circular
inclusion is positive definite when

Hooq apd Mot Mol
H AN+ op

and is negative definite when the inequalities (49) are both
reversed. Otherwise, the matrix P is indefinite.
The crack deflection at infinity is given by

_ o pelk+ 1) }
2po + (ko — D)’

1, (49)

(30)

Crack trajectories h([) relative to the interaction of a semi-
infinite crack with an elastic circular inclusion centered at (0,
1) are reported in Fig. 5, for different values of elastic parame-
ters. It can be noted that the defect tends to attract the crack in
the case of an inclusion less rigid than the matrix (Fig. 5(a)).
whereas in the opposite case of an inclusion more rigid than
the matrix. the crack tends to be repelled by the defect (Fig.
5(b)). Figures 5(c) and (d) refer to cases in which matrix P
is indefinite. Note in this case that a set of parameters can be
chosen. for which the deflection at infinity is equal to zero.

6 Conclusions

Application of perturbative techniques to the problem of frac-
ture propagation in an elastic material has been shown to be
relevant in obtaining approximate solutions of interaction of a
semi-infinite crack with defects.

Accepting the hypotheses of noninteracting defects and small
ratio between defect diameter and distance to the crack, an
analytical solution for the crack trajectory has been presented.
This solution gives qualitative information on crack path in
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brittle materials. In particular, inclusions less rigid than the
matrix generally *‘attract’’ the crack, whereas an opposite effect
is observed in the case of inclusions more rigid than the matrix.
In conclusion, a model has been presented to obtain the shape
of crack trajectory as influenced by number, position, form, and
elastic constants of the defects.
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