NONLINEAR SOLID MECHANICS

This book covers solid mechanics for nonlinear elastic and elastoplastic materials, describing the behavior of ductile materials subjected to extreme mechanical loading and their eventual failure. The book highlights constitutive features to describe the behavior of frictional materials such as geological media. On the basis of this theory, including large strain and inelastic behaviors, bifurcation and instability are developed with a special focus on the modeling of the emergence of local instabilities such as shear band formation and flutter of a continuum. The former is regarded as a precursor of fracture, whereas the latter is typical of granular materials. The treatment is complemented with qualitative experiments, illustrations from everyday life and simple examples taken from structural mechanics.

Davide Bigoni is a professor in the faculty of engineering at the University of Trento, where he has been head of the Department of Mechanical and Structural Engineering. He was honored as a Euromech Fellow of the European Mechanics Society. He is co-editor of the Journal of Mechanics of Materials and Structures (an international journal founded by C. R. Steele) and is associate editor of Mechanics Research Communications.
Nonlinear Solid Mechanics

BIFURCATION THEORY AND MATERIAL INSTABILITY

Davide Bigoni
University of Trento
a Michela

NON SONO IO AD AVERE IL PROBLEMA AD AVERE ME
Contents

Preface

Foreword by Giulio Maier

1 Introduction
 1.1 Bifurcation and instability to explain pattern formation
 1.2 Bifurcations in elasticity: The elastic cylinder
 1.3 Bifurcations in elastoplasticity: The Shanley model
 1.4 Shear bands and strain localization
 1.5 Bifurcation, softening and size effect as the response of a structure
 1.6 Chains with softening elements
 1.7 Shear band saturation and multiple shear banding
 1.8 Brittle and quasi-brittle materials
 1.9 Coulomb friction and non-associative plasticity
 1.10 Non-associative flow rule promotes material instabilities
 1.11 A perturbative approach to material instability
 1.12 A summary
 1.13 Exercises, details and curiosities
 1.13.1 Exercise: The Euler elastica and the double supported beam subject to compressive load
 1.13.2 Exercise: Bifurcation of a structure subject to tensile dead load
 1.13.3 Exercise: Degrees of freedom and number of critical loads of elastic structures
 1.13.4 Exercise: A structure with a trivial configuration unstable at a certain load, returning stable at higher load
 1.13.5 Exercise: Flutter and divergence instability in an elastic structure induced by Coulomb friction

2 Elements of tensor algebra and analysis
 2.1 Components onto an orthonormal basis
 2.2 Dyads
 2.3 Second-order tensors
 2.4 Rotation tensors
2.5 Positive definite second-order tensors, eigenvalues and eigenvectors 99
2.6 Reciprocal bases: Covariant and contravariant components 101
2.7 Spectral representation theorem 102
2.8 Square root of a tensor 103
2.9 Polar decomposition theorem 104
2.10 On coaxiality between second-order tensors 104
2.11 Fourth-order tensors 105
2.12 On the metric induced by semi-positive definite tensors 106
2.13 The Macaulay bracket operator 107
2.14 Differential calculus for tensors 107
2.15 Gradient 108
2.16 Divergence 110
2.17 Cylindrical coordinates 111
2.18 Divergence theorem 113
2.19 Convexity and quasi-convexity 114
2.20 Examples and details 116
 2.20.1 Example: Jordan normal form of a defective tensor with a double eigenvalue 116
 2.20.2 Example: Jordan normal form of a defective tensor with a triple eigenvalue 117
 2.20.3 Example: Inverse of the acoustic tensor of isotropic elasticity 117
 2.20.4 Example: Inverse of the acoustic tensor for a particular class of anisotropic elasticity 118
 2.20.5 Example: A representation for the square root of a tensor 118
 2.20.6 Proof of a property of the scalar product between two symmetric tensors 119
 2.20.7 Example: Inverse and positive definiteness of the fourth-order tensor defining linear isotropic elasticity 120
 2.20.8 Example: Inverse and positive definiteness of a fourth-order tensor defining a special anisotropic linear elasticity 121
 2.20.9 Example: Inverse of the elastoplastic fourth-order tangent tensor 121
 2.20.10 Example: Spectral representation of the elastoplastic fourth-order tangent tensor 122
 2.20.11 Example: Strict convexity of the strain energy defining linear isotropic elasticity 124

3 Solid mechanics at finite strains 125
 3.1 Kinematics 125
 3.1.1 Transformation of oriented line elements 127
 3.1.2 Transformation of oriented area elements 129
 3.1.3 Transformation of volume elements 129
3.1.4 Angular changes 130
3.1.5 Measures of strain 131
3.2 On material and spatial strain measures 135
 3.2.1 Rigid-body rotation of the reference configuration 135
 3.2.2 Rigid-body rotation of the current configuration 136
3.3 Motion of a deformable body 137
3.4 Mass conservation 141
3.5 Stress, dynamic forces 142
3.6 Power expended and work-conjugate stress/strain measures 146
3.7 Changes of fields for a superimposed rigid-body motion 150

4 Isotropic non-linear hyperelasticity 152
 4.1 Isotropic compressible hyperelastic material 153
 4.1.1 Kirchhoff–Saint Venant material 154
 4.2 Incompressible isotropic elasticity 155
 4.2.1 Mooney-Rivlin elasticity 156
 4.2.2 Neo-Hookean elasticity 158
 4.2.3 J_2-Deformation theory of plasticity 158
 4.2.4 The GBG model 159

5 Solutions of simple problems in finitely deformed non-linear elastic solids 162
 5.1 Uniaxial plane strain tension and compression of an incompressible elastic block 162
 5.2 Uniaxial plane strain tension and compression of Kirchhoff–Saint Venant material 168
 5.3 Uniaxial tension and compression of an incompressible elastic cylinder 170
 5.4 Simple shear of an elastic block 173
 5.5 Finite bending of an incompressible elastic block 179

6 Constitutive equations and anisotropic elasticity 188
 6.1 Constitutive equations: General concepts 188
 6.1.1 Change in observer and related principle of invariance of material response 189
 6.1.2 Indifference with respect to rigid-body rotation of the reference configuration 192
 6.1.3 Material symmetries 195
 6.1.4 Cauchy elasticity 198
 6.1.5 Green elastic or hyperelastic materials 201
 6.1.6 Incompressible hyperelasticity and constrained materials 203
 6.2 Rate and incremental elastic constitutive equations 207
 6.2.1 Elastic laws in incremental and rate form 207
 6.2.2 Relative Lagrangean description 210
 6.2.3 Hypoelasticity 220
Contents

7 Yield functions with emphasis on pressure sensitivity 223
 7.1 The Haigh-Westergaard representation 225
 7.2 The BP yield function 229
 7.2.1 Smoothness of the BP yield surface 233
 7.3 Reduction of the BP yield criterion to known cases 234
 7.3.1 Drucker-Prager and von Mises yield criteria 236
 7.3.2 A comparison of the BP yield criterion with experimental results 239
 7.4 Convexity of yield function and yield surface 241
 7.4.1 A general convexity result for a class of yield functions 242
 7.4.2 Convexity of the BP yield function 246
 7.4.3 Generating convex yield functions 247

8 Elastoplastic constitutive equations 251
 8.1 The theory of elastoplasticity at small strain 251
 8.2 The essential structure of rate elastoplastic constitutive equations at large strain 257
 8.2.1 The small strain theory recovered 264
 8.2.2 A theory of elastoplasticity based on multiplicative decomposition of the deformation gradient 265
 8.2.3 A simple constitutive model for granular materials evidencing flutter instability 267
 8.2.4 Elastoplastic coupling in the modelling of granular materials and geomaterials 268
 8.3 A summary on rate constitutive equations 273

9 Moving discontinuities and boundary value problems 275
 9.1 Moving discontinuities in solids 275
 9.1.1 Local jump conditions for propagating discontinuity surfaces 276
 9.1.2 Balance equations for regions containing a moving discontinuity surface 280
 9.2 Boundary value problems in finite, rate and incremental forms 285
 9.2.1 Quasi-static first-order rate problems 287
 9.2.2 Incremental non-linear elasticity 289

10 Global conditions of uniqueness and stability 293
 10.1 Uniqueness of the rate problem 298
 10.1.1 Raniecki comparison solids 299
 10.1.2 Associative elastoplasticity 300
 10.1.3 ‘In-loading comparison solid’ 302
 10.2 Stability in the Hill sense 303
 10.2.1 Associative elastoplasticity 304
 10.2.2 Stability of a quasi-static deformation process 305
 10.2.3 An example: Elastoplastic column buckling 306
11 Local conditions for uniqueness and stability

11.1 A local sufficient condition for uniqueness: Positive definiteness of the constitutive operator 311
 11.1.1 Uniaxial tension 315
 11.1.2 The small strain theory 316
11.2 Singularity of the constitutive operator 317
 11.2.1 Uniaxial tension 318
 11.2.2 The small strain theory 319
11.3 Strong ellipticity 319
 11.3.1 The small strain theory 323
11.4 Ellipticity, strain localisation and shear bands 323
 11.4.1 The small strain theory 326
11.5 Flutter instability 331
 11.5.1 Onset of flutter 331
 11.5.2 Flutter instability for small strain elastoplasticity with isotropic elasticity 332
 11.5.3 Physical meaning and consequences of flutter 335
11.6 Other types of local criteria and instabilities 335
11.7 A summary on local and global uniqueness and stability criteria 336

12 Incremental bifurcation of elastic solids

12.1 The bifurcation problem 339
12.2 Bifurcations of incompressible elastic solids deformed in plane strain 340
 12.2.1 Local uniqueness and stability criteria for Biot plane strain and incompressible elasticity 340
 12.2.2 Bifurcations of layered structures: General solution 351
 12.2.3 Surface bifurcation 353
 12.2.4 Interfacial bifurcations 355
 12.2.5 Bifurcations of an elastic incompressible block 358
 12.2.6 Incompressible elastic block on a ‘spring foundation’ 361
 12.2.7 Multi-layered elastic structures 363
12.3 Bifurcations of an incompressible elastic cylinder 365
 12.3.1 Numerical results for bifurcations of an elastic cylinder subject to axial compression 370
12.4 Bifurcation under plane strain bending 375

13 Applications of local and global uniqueness and stability criteria to non-associative elastoplasticity

13.1 Local uniqueness and stability criteria for non-associative elastoplasticity at small strain 385
13.2 Axisymmetric bifurcations of an elastoplastic cylinder under uniaxial stress 388
 13.2.1 Results for the axisymmetric bifurcations of a cylinder 391
13.3 Flutter instability for a finite-strain plasticity model with anisotropic elasticity 396
Contents

13.3.1 Examples of flutter instability for plane problems 396
13.3.2 Spectral analysis of the acoustic tensor 400

14 Wave propagation, stability and bifurcation 403
14.1 Incremental waves and bifurcation 405
14.2 Incremental plane waves 407
14.2.1 Non-linear elastic materials 407
14.3 Waves and material instabilities in elastoplasticity 409
14.3.1 Instability of uniform flow 413
14.3.2 A discussion on waves and instability in elastoplasticity 419
14.4 Acceleration waves 420
14.4.1 Non-linear elastic material deformed incrementally 420
14.4.2 Elastoplastic materials 420

15 Post-critical behaviour and multiple shear band formation 427
15.1 One-dimensional elastic models with non-convex energy 428
15.2 Two-dimensional elastoplastic modelling of post-shear banding 434
15.2.1 Post-shear banding analysis 436
15.2.2 Sharp shear banding versus saturation 439
15.2.3 Post-band saturation analysis 439

16 A perturbative approach to material instability 444
16.1 Infinite-body Green’s function for a pre-stressed material 447
16.1.1 Quasi-static Green’s function 447
16.1.2 The dynamic time-harmonic Green’s function for general non-symmetric constitutive equations 457
16.1.3 Effects of flutter instability revealed by a pulsating perturbing dipole 464
16.2 Finite-length crack in a pre-stressed material 469
16.2.1 Finite-length crack parallel to an orthotropy axis 471
16.2.2 The inclined crack 480
16.2.3 Shear bands interacting with a finite-length crack 482
16.2.4 Incremental energy release rate for crack growth 486
16.3 Mode I perturbation of a stiffener in an infinite non-linear elastic material subjected to finite simple shear deformation 489
16.4 The stress state near a shear band and its propagation 498

References 507
Index 527

Color plates section is between pages 274 and 275
Preface

The purpose of this book is to present a research summary on solid mechanics at large strain, including the treatment of bifurcation and instability phenomena. The framework is crucial to the understanding of failure mechanisms in ductile materials, as connected to material instabilities, such as, shear banding.

I have employed Chapters 2 through 5 as a textbook for a graduate course on non-linear elasticity that I have offered at the University of Trento since 1999, whereas Chapters 8, 10, 11 and 13 have been the basis for a course held at CISM (no. 414, ‘Material Instabilities in Elastic and Inelastic Solids’, H. Petryk, ed.). Chapters 6, 7, 9, 12, 14 and 15 have been added to present the elasticity and the yield criteria in detail, including a treatment on elastic bifurcation and instability, wave propagation and multiple shear banding. This material has been taught during seminars for graduate students at various universities. Chapter 16 is devoted to the perturbative approach to material instability, developed by me in a series of articles in cooperation with D. Capuani, M. Brun, F. Dal Corso, M. Gei, A. Piccolroaz and J. R. Willis. Finally, I have to admit that the Introduction of the book is overlong; in fact, I have used it for a 20-hour graduate course on stability and bifurcation. The hope is to attract attention to the main topics presented in the book.

During preparation of this book, I have enjoyed help from a number of friends, who have read and commented on parts of the manuscript: L. Argani, M. Bacca, K. Bertoldi, M. Brun, F. Dal Corso, A. Gajo, M. Gei, G. Mishuris, D. Misseroni, A. B. Movchan, N. V. Movchan, G. Noselli, H. Petryk, A. Piccolroaz, G. Puglisi, A. Realì, S. Roccabianca and D. Veber.

The photos presented in this book have been taken by me (using a Nikon FG–20 traditional camera or a Panasonic DMC–FZ5 digital camera) or by students at the University of Trento (using a Nikon D100 or a Nikon D200 digital camera). Most of the experiments presented have been performed at the University of Trento in the Laboratory for Physical Modeling of Structures and Photoelasticity.
Foreword

This book clearly exhibits some remarkable and unusual features. The central theme addresses one of the primary research challenges at present in solid and structural mechanics. In fact, research on nonlinearities owing to large deformations and inelastic behaviours of materials now has to be tackled for many systematic applications in mechanical and civil engineering because the evaluation of safety margins has become computationally possible, with obvious advantages when compared with “admissible stress” criteria, popular in past structural engineering practice.

The content of this book reflects the intensive and successful research work carried out by the author and his co-workers both at the University of Trento and at other institutions. The detailed introduction includes several clear illustrative descriptions of experiments and, hence, solid links with practical motivation and application for the book’s content. It seems that in his writing, Davide Bigoni has been mindful of Cicero’s admonition not always implemented in books on mechanics: ‘Non enim paranda nobis solum, sed fruenda sapientia est’ (‘The knowledge should not only be acquired; it should be utilized as well’). Isaac Newton expanded on Cicero’s advice when he wrote, ‘Exempla docent non minus quam praecepta’ (‘Examples are not less instructive than theories’). In fact, the subsequent chapters include many examples to clarify notions of applied mathematics and theoretical continuum mechanics.

The mathematics and physics covered in this volume are not easily found in the existing engineering-oriented literature in the consistent manner presented herein. At present, attention should be paid more than in the past to the warning addressed to engineers (‘ingeniarii’) by Leonardo da Vinci, namely, ‘Quelli che si innamoran di pratica senza scienza son come ’l norchier . . . senza timone e bussola’ (‘Those who like practice without science are like a steersman without rudder and without steering compass’). More explicitly, Leonardo underlined the important role of mathematics: ‘Nessuna umana investigazione si può dimandare vera scienza se non passa per le matematiche dimostrazioni’ (‘No human research can be true science if it does not go through mathematical demonstrations’). Probably the author paid attention to this master’s wisdom in compiling this volume.
As a conclusion, I express the opinion that this book provides a remarkable and timely contribution both to scientific education at the doctoral level and to the updating of scientific approaches and analytical tools in several areas of mechanical, civil and materials technologies.

Giulio Maier