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PREFACE

Limit analysis is concerned with the development of effective methods for
computing the ultimate load of many types of structures. It is especially for
thin plates that limit analysis supplies relatively sim ple and reliable results of
intense interest to practicing engineers and to the students of plasticity alike.

The prime objective of this book is to present basic features of the limit
analysis of plates. Emphasis is placed both on mathematical aspects of the
plastic plate equations and on the solutions for a broad class of plates obeying
various yield conditions. Methods of the limit analysis for plates are
explained and approximate theories such as the yield-line method, are
discussed on the background of the general theory.

It is hoped that this book will prove useful to both the research workers
and graduate students in the field of applied plasticity as well as to the civil
and structural engineers.

The first draft of this book was prepared during my stay at the Mexico
National University (UNAM) in Mexico City. A certain part of the material
covers the lectures delivered by Professor Antoni Sawczuk at the Inter-
national Centre for Mechanical Sciences (CISM) in Udine, Italy. The results
obtained by his research group at the Institute of Fundamental Technological
Research of the Polish Academy of Sciences are also included.

Untimely death of Professor Sawczuk interfered with the prompt prepara-
tion of the book. The present updated text was finally prepared and the
encouragement of Professor Wojciech Szczepiniski is appreciated.

1 would like to gratefully acknowledge the help of Professor Marek
Kwiecinski of the Warsaw University of Technology, who read the whole
draft and made useful corrections. Thanks are also due to him for the editing
of the English translation.

I am also greatly indebted to Professor Marek Janas of the Polish
Academy of Sciences for his assistance in commenting on and improving the
final version of the book.

Last but by no means least, I would like to thank Dr. Jerzy A. Supel, my
husband, for his patience and encouragement.

Joanna Sokél-Supel

Warsaw, November 1991
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CHAPTER 1

INTRODUCTION

1.1. Preliminaries

The theory of plasticity has a broad range of applications in many
branches of technology. Its methods permit to describe metal-forming
processes, allow to estimate safety of structures against collapsdl make
possible to evaluate flow of bulk materials and stability of slopes.
Stress analysis and design of structural clements in chemical engineering,
aeronautics, power engineering, machine and ship building, civil en-
gineering, nuclear technology is nowadays made taking into account
methods and solutions furnished by the theory of plasticity and by
its specialized branches such as limit analysis, thermoplasticity, shakedown
analysis or study of post-yield behaviour, [15], [17], [27], [43], [55],
[58], [59], [79).

Mathematical models of plastic response are useful in studies of vehicle
collisions and response of containments to transient loadings, in designing
machines for earthwork and mining, as well as in studying landslides and
avalanches.

Implementation of methods of plastic analysis in engineering appears to
have been unsufficient, considering properties the real materials possess to
sustain plastic deformation. The main reason for this is the wealth of
accumulated and diffused knowledge about elastic response as well as
linearity of equations governing infinitesimal elastic deformations. Methods
of elastic analysis and design, various sets of useful formulae, tables and
diagrams are available in the technical literature and constitute a substantial
aid to designer’s work. There is, however, a natural trend to produce
appropriate collections of design aids within the plastic approach and place
them as useful tools in the hands of engineer.

To make any theory a powerful and reliable tool of engineering at least
three conditions must be satisfied. In the first place the theory must be sound,
that is well set analytically and properly verified experimentally. Clearly
stated assumptions and a solid mathematical structure make the necessary
part of such a theory. Several theories of plastic behaviour satisfy this
requirement.
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Secondly, a theory should be provided with appropriate methods for
solving boundary or initial value problems for systems of govering differen-
tial equations. Moreover, a sufficient number of solutions to practically
important problems should be known so that structural engineer could assess
the relevance of the theory. The third requirement is that the results a theory
furnishes must be properly presented in the form of collections of tables,
formulae and algorithms or programs so as to permit a straightforward
application of the information to the problem at hand. In this specific domain
a large amount of work has yet to be done to bring the plasticity theories to
everyday applications in structural analysis.

It is also important to have methods of plastic analysis and design
incorporated in the codes of practice for design of civil and mechanical
engineering structures. Further, if the methods are admitted, as it is now
mostly the case, it is necessary to have available appropriate recommen-
dations or routines.

In this book we intend to combine theoretical aspects of plasticity with
practical implementations, possibly in the form of design aids. The con-
siderations will be restricted to the limit analysis of plates. Before passing to
specific problems it appears, however, worthwhile to discern the place kept by
the limit analysis theory in the mosaic of plastic methods of structural
analysis.

1.2. Plastic analysis

The most developed branch of plastic analysis of structures is the theory
of limit analysis. Fairly advanced are the studies regarding the shakedown
analysis as well as the post-yield behaviour, including changes in the
structural shape in the process of plastic flow. There also exists an extensive
literature on dynamics of plastic structures and on optimal plastic design. In
general the rigid-perfectly plastic or the elastic-perfectly plastic models of
material response are employed, [18], [29], [36], [38], [49], [61], [64], [65], [75].

The theory of limit analysis studies the behaviour of ideally plastic
structures. The main purpose is to determine the value of the load multiplier
at which a given structure collapses, i.e. transforms into a mechanism. To
solve a problem of analysis and to establish the intensity of the load
a structure or a machine element can support it is necessary to solve a system
of differential equations of equilibrium and flow, supplemented by algebraic
relations representing a yield condition. The obtained system is usually
nonlinear.

Most of the real structures are subjected to multi-parameter loadings. In
many instances we know only the range of the loading program in the loading

SCOPE 11

space. Such ranges are, for example, prescribed by the codes of practice.
The loads act independently, varying in magnitude, direction and sense.
They are repetitive and usually vary within prescribed limits, neither
the sequence of loading nor its frequency being specified. This results
in repeated and fluctuating deformations which may either stabilize or
evolve, resulting in shakedown or in unserviceability, respectively. The
shakedown analysis studies behaviour of elastic-ideally plastic structures
under variablerepeated loading. It answers the question whether an elas-
tic-plastic structure will respond elastically after passing a certain stage
of plastic deformation and developing a field of residual stresses. In
shakedown analysis we are mostly interested in finding the boundaries
of the loading range where the response is elastic but differs from
the response of a structure without residual stresses, [36].

In many situations the deformations of a structure under sustained load
become significant and thus the shape of a structure changes so that it
influences the state of stress. The original and the current configurations of
a structure have to be distinguished. The problem of post-yield behaviour can
be properly set in terms of geometrically nonlinear theories. Geometric
changes are of importance in design as they can either be useful or dangerous.
For certain loading combinations the post-yield behaviour results in “strength-
ening” of a structure, in some other instability occurs resulting in a catastro-
phic collapse.

Besides the limit analysis, the shakedown theory and the post-yield
behaviour, the plastic analysis includes dynamics of plastic structures. An
ideal elastic-plastic structure, if loaded impulsively can carry loads exceeding
the static collapse load. The induced accelerations result in plastic motion
which ceases when the kinetic energy introduced is dissipated in the process of
plastic flow.

A specific domain of the theory of plastic structures is that of optimum
design, [3], [65]. Most of the optimum design problems in plasticity constitute
counterparts of the analysis. Such structural shapes or cross-sectional sizes
are sought for which lead to the minimum material consumption to support
prescribed ultimate load.

1.3. Scope

In the present book we shall confine our attention solely to the limit
analysis of plates. Several yield criteria will be employed in order to give
a feeling to what extent the form of a yield condition influences methods of
solution and characteristic features of a solution itself. Emphasis is put both
on mathematical aspects of the plastic plate equations and on the solutions
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for a broad class of plates obeying various yield criteria. Methods of limit
analysis of plates are explained and approximate theories like the yield-line
method are discussed on the background of a general theory. A collection of
tables and design aids are given.

To make the presentation self contained the basic equations of perfect
plasticity are briefly shown in Chapter 2. The plate eq uations are analyzed in
Chapter 3. Chapter 4 concerns with circular plates under rotationally
symmetric loading when ordinary differential equations govern the plastic
behaviour. Analytical and numerical solutions are given. Bounding tech-
niques that furnish estimates to the collapse load intensity are explained in
Chapter 5, whergas in the next chapter orthotropic and nonhomogeneous
plates are briefly considered. Chapter 8 is devoted to bending of plates of
arbitrary shape. Special attention is given to plates obeying a square yield
criterion in the plane of principal moments. A number of new complete
solutions is presented allowing to assess the accuracy of results furnished by
the yield line theory, which is presented in Chapter 7 and accompanied by
a set of tables.

CHAPTER 2

PRINCIPLES OF LIMIT ANALYSIS

2.1. Basic assumptions

2.1.1. Mathematical model of plastic behaviour. Mechanical behaviour of
rate insensitive elastic-plastic, non-hardening solids is idealized in the
stress-strain diagram shown in Fig. 2.1a. Unconstrained plastic flow begins
in uniaxial tension at the yield stress o, and in uniaxial compression at g, .

a) b)

ST &t

Fig. 2.1. (a) Elastic-perfectly plastic, (b) rigid-perfectly plastic models of materials

In problems regarding unconstrained plastic motion the elastic strains can
usually be disregarded when compared with the prevailing plasticstrains. The
rigid-plastic model of material response is hence obtained, Fig. 2.1b. The
constitutive equation of rigid-perfectly plastic solids involves the stress tensor
o and the strain rate tensor V

o= o(V). (2.1)

Its general form is subjected to the condition that the stress components be
homogeneous functions of order zero with respect to time, i.e. with respect to
the strain rates as well. The homogeneity requirement: o(x V) = «%a(V),
o being a constant, results in the system of equations
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doy; .

v, V,=0 (2.2)
which expresses analytically the essential property of the rate insensitive
plastic flow, namely that the state of stress at yield does not depend on how
fast this state has been reached. From now on a repeated index denotes a sum
according to the summation convention.

In view of the homogeneity requirement not all stress components are
independent since they are expressible in terms of the ratios of strain rate
components. Since 6;; = 7, six stress components ¢;; are expressible in terms
of five ratios of strain rate components. On eliminating the parameters the
yield criterion is obtained

Floz)=0 or f(g;)—c=0, (2.3)
where ¢ is a material constant.

The yield criterion can be represented as a surface in the six-dimensional
stress space. The yield locus (2.3) is the boundary of the elastic domain where

F(a;;) <0. The states F(;;)> 0 are not admissible for a perfectly plastic solid.
The surface (2.3) is convex.

2.1.2. Yield criteria. The yield criterion (2.3) for specific materials is
specified on the grounds of experimental data. For metals two criteria are
generally accepted, namely the Huber-Mises and the Tresca criteria. In both
the influence of hydrostatic stress component on the onset of yielding is
neglected.

The Huber-Mises yield criterion states that a material becomes plastic
when the elastic distortion energy per unit volume reaches a critical value

F=36,0,—046;—202=0. 24)

i Y g
In the state of plane stress the condition (2.4) represents an ellipsoid
a2 — .0, + } + 31}, = a. (2.5)

The Tresca yield criterion states that a material becomes plastic when the
maximum shearing stress reaches a limiting value

sup(|7, — 0,1, o, — 7, l|oy — 7, 1) = G, @)

In the case of plane stress, o, = 0, the condition (2.6) takes the form of the
following three equations

Fy=—(a,—q,)(6,—q,) + 3} =0,
,=—=(o,+q),+q)+dl =0, @7

=
Il

F,=(0,—0,) +40} —a} =0.

BASIC ASSUMPTIONS 15

The elastic region is therefore bounded by two cones F, =0, F,=0and by an
elliptic cylinder F,=0.

The equations describing plastic behaviour of structures can be simplified
by using certain approximate yield criteria such as the maximum reduced
stress criterion

2
suplo, — (0, + 0, +0,)/3| =3q  i=1,23. (28)

In the space of principal stresses it represents a regular hexagonal prism
circumscribing the Tresca criterion and having common symmetry planes. In
plane stress the criterion becomes

1 1
crl|,2|crl+r72|}-‘—_- G- (2.9)

1
sup(ldl _io'; |s ]gz _2

In plate analysis a yield criterion of maximum normal stress is also
employed. For the case of plane stress it reduces to the first two of Egs.(2.7)
and represents two intersecting cones.

Comparison of Huber-Mises, Tresca, maximum reduced stress and
maximum normal stress criteria for plane stress in the plane of principal
stresses is shown in Fig. 2.2.

%5

75

g &

LS

" Tresca
“Huber Mises

max. reduced stress
| max normal stress

Fig. 2.2. Comparison ol Huber-Mises, Tresca, maximum reduced stress and maximum normal
stress yield criteria
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2.1.3. Power of dissipation. The power of dissipation in plastic flow
at a generic particle whose stress state is described by ¢ and the strain
rate state by V is

d=oV. (2.10)

This power is assumed to be fully dissipated in the form of heat during plastic
flow and is regarded positive.

The constitutive equation of plastic solid relates the stress tensor eonly to
the tensor of the plastic strain rates V, (2.1), and it is homogeneous of order
zero; thus

a) the power of dissipation is a single valued function of the strain rate

d=d(V), (2.11)

b) the dissipation rate function (V) is homogeneous of the order one with
respect to the strain rates

d (V) = ad(V), =0
or (2.12)
ad
— ' V=d.
av ¥

The latter property expresses the inviscid nature of plastic flow.

2.1.4. Constitutive equation of limit analysis. The yield criterion predicts at
what state of stress the plastic motion can take place. In order to answer the
question what is the mechanism of motion at a particle stressed so that the
yield criterion is satisfied it is necessary to know a flow rule, i.e. the
constitutive relation governing plastic motion. Various theories of plasticity
exist depending upon the form of the constitutive relation.

In limit analysis the associated flow rule is accepted in which the yield
function (2.3) is taken as the plastic potential:

oF _ of

Vy=v =¥ y
i doy; day;

vz=0. (2.13)

This means that the strain rate vector V is directed along the outer
normal to the surface F = 0, Fig. 2.3. Since the yield surface (2.3) is
convex,

of

Loy >0, 214)

i

and the power of dissipation (2.10) is nonnegative thus the scalar multiplier
v is nonnegative.

BASIC ASSUMPTIONS 17

Fig. 2.3. Associated Mow rule

Taking f{o;;) as a homogeneous function of order n>0 in stress
it is found that
d d

T one

When the yield surface has ridges and corners, as at A in Fig. 23,
the gradient there is not uniquely defined. The plastic potential flow
law at the singular points where k surfaces F,=0 meet is then generalized
to take the form

(2.15)

v

dF,
: doy;
and all v, are nonnegative. The strain rate vector remains within the fan
defined by the normals to the surfaces meeting at singular points. Such
a situation takes place for the Tresca yield condition (2.7) on the ridges of the
corresponding yield surface.

Vii=v

(2.16)

2.1.5. Description of limit analysis problem. In the theory of limit analysis
an incipient motion of perfectly plastic structures and continua is studied. Its
objective is to solve boundary value problems for equations governing plastic
motion under a system of loads increasing quasistatically, starting from zero.
The term quasistatic means that the loading process is so slow that all
dynamic effects can be disregarded.

The classical presentation of the limit analysis theory concerns a system of
loads increasing in proportion to a single parameter u and is described as
follows:

T(x,0) = p (1) P(x), 2.17)
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PREFACE

Limit analysis is concerned with the development of effective methods for
computing the ultimate load of many types of structures. It is especially for
thin plates that limit analysis supplies relatively simple and reliable results of
intense interest to practicing engineers and to the students of plasticity alike.

The prime objective of this book is to present basic features of the limit
analysis of plates. Emphasis is placed both on mathematical aspects of the
plastic plate equations and on the solutions for a broad class of plates obeying
various yield conditions. Methods of the limit analysis for plates are
explained and approximate theories such as the yield-line method, are
discussed on the background of the general theory.

It is hoped that this book will prove useful to both the research workers
and graduate students in the field of applied plasticity as well as to the civil
and structural engineers. )

The first draft of this book was prepared during my stay at the Mexico
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Secondly, a theory should be provided with appropriate methods for
solving boundary or initial value problems for systems of govering differen-
tial equations. Moreover, a sufficient number of solutions to practically
important problems should be known so that structural engineer could assess
the relevance of the theory. The third requirement is that the results a theory
furnishes must be properly presented in the form eof collections of tables,
formulae and algorithms or programs so as to permit a straightforward
application of the information to the problem at hand. In this specific domain
4 large amount of work has yet to be done to bring the plasticity theories to
everyday applications in structural analysis.

1t is also important to have methods of plastic analysxs and design
incorporated In the codes of practice for design of civil and mechanical
onglneering structures. Further, if the methods are admitted, as it is now
montly ‘ha case, it is necessary to have available appropriate recommen-
dations or routines.

In this book we intend to combine theoretical aspects of plasticity with

practical implementations, possibly in the form of design aids. The con-
siderations will be restricted to the limit analysis of plates. Before passing to
specific problems it appears, however, worthwhile to discern the place kept by
the limit analysis theory in the mosaic of plastic methods of structural
analysis.

1.2. Plastic analysis

The most developed branch of plastic analysis of structures is the theory
of limit analysis. Fairly advanced are the studies regarding the shakedown
anulysis a8 well as the post-yield behaviour, including changes in the
structural shape in the process of plastic flow. There also exists an extensive
literature on dynamics of plastic structures and on optimal plastic design. In
general the rigid-perfectly plastic or the elastic-perfectly plastic models of
material response are employed, [18], [29], [36], [38], [49], [61], [64], [65], [75].

The theory of limit analysis studies the behaviour of ideally plastic
structures. The main purpose is to determine the value of the load multiplier
at which a given structure collapses, i.e. transforms into a mechanism. To
solve a problem of analysis and to establish the intensity of the load
a structure or a machine element can support it is necessary to solve a system
of differential equations of equilibrium and flow, supplemented by algebraic
relations representing a yield condition. The obtained system is usually
nonlinear.

Most of the real structures are subjected to multi-parameter loadings. In
many instances we know only the range of the loading program in the loading

SCOPE 11

space. Such ranges are, for example, prescribed by the codes of practice.
The loads act independently, varying in magnitude, direction and sense.
They are repetitive and usually vary within prescribed limits, neither
the sequence of loading nor its frequency being specified. This results
in repeated and fluctuating deformations which may either stabilize or
evolve, resulting in shakedown or in unserviceability, respectively. The
shakedown analysis studies behaviour of elastic-ideally plastic structures
under variablerepeated loading. It answers the question whether an elas-
tic-plastic structure will respond elastically after passing a certain stage
of plastic deformation and developing a field of residual stresses. In
shakedown analysis we are mostly interested in finding the boundaries
of the loading range where the response is elastic but differs from
the response of a structure without residual stresses, [36].

In many situations the deformations of a structure under sustained load
become significant and thus the shape of a structure changes so that it
influences the state of stress. The original and the current configurations of
a structure have to be distinguished. The problem of post-yield behaviour can
be properly set in terms of geometrically nonlinear theories. Geometric
changes are of importance in design as they can either be useful or dangerous.
For certain loading combinations the post-yield behaviour results in “strength-
ening” of a structure, in some other instability occurs resulting in a catastro-
phic collapse.

Besides the limit analysis, the shakedown theory and the post-yield
behaviour, the plastic analysis includes dynamics of plastic structures. An
ideal elastic-plastic structure, if loaded impulsively can carry loads exceeding
the static collapse load. The induced accelerations result in plastic motion
which ceases when the kinetic energy introduced is dissipated in the process of
plastic flow.

A specific domain of the theory of plastic structures is that of optimum
design, [3], [65]. Most of the optimum design problems in plasticity constitute
counterparts of the analysis. Such structural shapes or cross-sectional sizes
are sought for which lead to the minimum material consumption to support
prescribed ultimate load.

1.3. Scope

In the present book we shall confine our attention solely to the limit
analysis of plates. Several yield criteria will be employed in order to give
a feeling to what extent the form of a yield condition influences methods of
solution and characteristic features of a solution itself. Emphasis is put both
on mathematical aspects of the plastic plate equations and on the solutions
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for a broad class of plates obeying various yield criteria. Methods oflimit
analysis of plates are explained and approximate theories like the yield-line
method are discussed on the background of a general theory. A collection of
tables and design aids are given.

To make the presentation self contained the basic equations of perfect
plasticity are briefly shown in Chapter 2. The plate equations arc analyzed in
Chapter 3. Chapter 4 concerns with circular plates under rotationally
symmetric loading when ordinary differential equations govern the plastic
behaviour. Analytical and numerical solutions are given. Bounding tech-
niques that furnish estimates to the collapse load intensity are explained in
Chapter 5, whergas in the next chapter orthotropic and nonhomogeneous
plates are briefly considered. Chapter 8 is devoted to bending of plates of
arbitrary shape, Special attention is given to plates obeying a square yield
eriterlon in the plane of principal moments. A number of new complete
solutions is presented allowing to assess the accuracy of results furnished by

“the yield line theory, which is presented in Chapter 7 and accompanied by

a set of tables.

CHAPTER 2

PRINCIPLES OF LIMIT ANALYSIS

2.1. Basic assumptions

2.1.1. Mathematical model of plastic behaviour. Mechanical behaviour of
rate insensitive elastic-plastic, non-hardening solids is idealized in the
stress-strain diagram shown in Fig. 2.1a. Unconstrained plastic flow begins
in uniaxial tension at the yield stress oy and in uniaxial compression at o .

a) b)
& 6
+
61 7 5: T
/ {
/ !
£ |
/ v i v
/ |
/ |
|
/ |
—t /1" —dlg

Fig. 2.1. (a) Elastic-perfectly plastic, (b) rigid-perfectly plastic models of materials

In problems regarding unconstrained plastic motion the elastic strains can
usually be disregarded when compared with the prevailing plastic strains. The
rigid-plastic model of material response is hence obtained, Fig. 2.1b. The
constitutive equation of rigid-perfectly plastic solids involves the stress tensor
o and the strain rate tensor V

o= (V). @1
Its general form is subjected to the condition that the stress components be
homogeneous functions of order zero with respect to time, i.e. with respect to
the strain rates as well. The homogeneity requirement: o(xV) = oa?a(V),
o being a constant, results in the system of equations
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doy;
aV: V=0 22

which expresses analytically the essential property of the rate insensitive
plastic flow, namely that the state of stress at yield does not depend on how
fast this state has been reached. From now on a repeated index denotes a sum
according to the summation convention.

In view of the homogeneity requirement not all stress components are
independent since they are expressible in terms of the ratios of strain rate
compenents. Since o;; = 0, six stress components o;; are expressible in terms
of five ratios of strain rate components. On eliminating the parameters the
yield criterion is obtained

F)=0 or f(o;)—c=0, @3)

where ¢ is a material constant.

The yield criterion can be represented as a surface in the six-dimensional
stress space. The yield locus (2.3) is the boundary of the elastic domain where
Ho;)<0. The states F(o;;)> 0 are not admissible for a perfectly plastic solid.
The surface (2.3) is convex.

2.1.2. Yield criteria. The yield criterion (2.3) for specific materials is
specified on the grounds of experimental data. For metals two criteria are
generally accepted, namely the Huber-Mises and the Tresca criteria. In both
the influence of hydrostatic stress component on the onset of yielding is
neglected.

The Huber-Mises yield criterion states that a matenal becomes plastic
when the elastic distortion energy per unit volume reaches a critical value

F=30;0;— 0,05 — 20 =0. 24)
In the state of plane stress the condition (2.4) represents an ellipsoid
0% — 0,0, + 0% + 312, = og. 2.5

The Tresca yield criterion states that a material becomes plastic when the
maximum shearing stress reaches a limiting value

sup(lo; — o, |0, — 03l 10, — 0, ) =4, 2.6

In the case of plane stress, o, = 0, the condition (2.6) takes the form of the
following three equations

F=—(0,—¢)(,—q)+d%=0,
F,=—(0,+qg)(o,+)+c3=0, i 2.7
Fy,=(0,—0,) +40} — 03 =0.

BASIC ASSUMPTIONS 15

The elastic region is therefore bounded by two cones F, =0, F, =0 and by an
elliptic cylinder F,=0.

The equations describing plastic behaviour of structures can be simplified
by using certain approximate yield criteria such as the maximum reduced
stress criterion

2
suple, — (o, + 0, +0)/3|=2q, i=1,2,3. 2.8)

In the space of principal stresses it represents a regular hexagonal prism
circumscribing the Tresca criterion and having common symmetry planes. In
plane stress the criterion becomes

1 1 1

Sup(|”1_5521’101_5‘71|75|”1 +.0,]) = g, 2.9)

In plate analysis a yield criterion of maximum normal stress is also
employed. For the case of plane stress it reduces to the first two of Eqs.(2.7)
and represents two intersecting cones.

Comparison of Huber-Mises, Tresca, maximum reduced stress and
maximum normal stress criteria for plane stress in the plane of principal
stresses is shown in Fig. 2.2.

6
6
2
6 /

73 &B
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AN Vs
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: e
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-6 N % ¢ 75' %
g . ! & 6 8
2 56
56|/
/7% :
/ / Tresca
. . Huber Mises
/ \_ max. reduced stress
) £ = max. normal stress
o

Fig. 2.2. Comparison of Huber-Mises, Tresca, maximum reduced stress and maximum normal
stress yield criteria
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2.1.3. Power of dissipation. The power of dissipation in plastic flow
at a generic particle whose stress state is described by ¢ and the strain
rate state by V is

d=aV. (2.10)

This power is assumed to be fully dissipated in the form of heat during plastic
flow and is regarded positive.

The constitutive equation of plastic solid relates the stress tensor oonly to
the tensor of the plastic strain rates V, (2.1), and it is homogeneous of order
zero; thus .

a) the power of dissipation is a single valued function of the strain rate

d=d(V), (2.11)

b) the dissipation rate function 4(V) is homo geneous of the order one with
respect to the strain rates

d(aV) = ad(V), a>0
or (2.12)
od

W-V:d.

The latter property expresses the inviscid nature of plastic flow.

2.1.4. Constitutive equation of limit analysis. The yield criterion predicts at
what state of stress the plastic motion can take place. In order to answer the
question what is the mechanism of motion at a particle stressed so that the
yield criterion is satisfied it is necessary to know a flow rule, ie. the
constitutive relation governing plastic motion. Various theories of plasticity
exist depending upon the form of the constitutive relation.

In limit analysis the associated flow rule is accepted in which the yield
function (2.3) is taken as the plastic potential:

=y2, v>=0. (2.13)
‘ day;
This means that the strain rate vector V is directed along the outer
normal to the surface F = 0, Fig. 2.3. Since the yield surface (2.3) is
convex,

a

—0; =0, 2.1

20,1 @14
and the power of dissipation (2.10) is nonnegative thus the scalar multiplier
v is nonnegative.

BASIC ASSUMPTIONS 17

Fig. 2.3. Associated flow rule

Taking flo;;) as a homogeneous function of order n>0 in stress
it is found that
d d

V= — =
nf  nc

When the yield surface has ridges and corners, as at 4 in Fig. 2.3,
the gradient there is not uniquely defined. The plastic potential flow
law at the singular points where k surfaces F,=0 meet is then generalized
to take the form

(2.15)

_ 0F,
and all v, are nonnegative. The strain rate vector remains within the fan
defined by the normals to the surfaces meeting at singular points. Such
asituation takes place for the Tresca yield condition (2.7) on the ridges of the
corresponding yield surface.

v, (2.16)

2.1.5. Description of limit analysis problem. In the theory of limit analysis
an incipient motion of perfectly plastic structures and continua is studied. Its
objective is to solve boundary value problems for equations governing plastic
motion under a system of loads increasing quasistatically, starting from zero.
The term quasistatic means that the loading process is so slow that all
dynamic effects can be disregarded.

The classical presentation of the limit analysis theory concerns a system of
loads increasing in proportion to a single parameter z and is described as
follows:

T(x0) = p() P, | @17
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where P(x) denotes a reference load distribution. For definiteness and clarity
the analysis will be restricted to this type of loading only.
The limit analysis theory for a case of a finite number of loading
parameters, i.e. T (x,£)= g, (f) P, (x) can be generalized immediately, [29], [43].
Dealing with incipient plastic flow we assume that strains £ remain very
small. Hence, strains ¢ and displacements u obey the small strain tensor
definition

. ‘ .
&= 5,(u,-,,~ +uj). (2.18)

Displacements u and their velocities i are proportional to each other; thus
strain rates £ are

, 1. R
by = Vi =5+ ) (2.19)

As a rule for most metallic materials no plastic volume changes are
admitted and therefore the strain rates are subjected to the incompressibility
requirement,

Vi=0. (2.20)

The complete solution of limit analysis problem consists in specifying:
— the ultimate load (collapse load) i.e. the value y, of the load multiplier
at which plastic motion can commence, )
— the stress field o(x) associated with the load multiplier g, and
satisfying:
a) the equilibrium equations

Gy =0, @21

b) the prescribed stress boundary conditions,
c) a yield condition F(5)<0.

— a mechanism of plastic motion, i.e. a velocity field u(x) of incipient
plastic motion under the load u,P, satisfying the prescribed kinematical
boundary conditions,

— the flow law specifying the mechanism of plastic motion at a material
particle stressed to the yielding. The associated flow law (2.13) is employed.
The requirement regarding nonnegativeness of the flow multiplier v must be
verified. If v=0 the region stressed to the collapse behaves in the overall
motion as a rigid body. The plastic motion ceases whenever F(¢)<0.

2.1.6. Uniqueness of solution. The solution of a limit analysis problem
specifies the stress field and the collapse mechanism at the ultimate load.

The problem of uniqueness in the theory of limit analysis consists in
answering the question whether a stress field o;;(x) and a strain rate field

BASIC ASSUMPTIONS 19

V; (x) associated with an incipient plastic motion of a structure subjected to
the collapse load T=p,P(x), are unique.

Consider an isotropic rigid-plastic body of volume ¥ and surface S, subjected
to surface traction T = y, P over area Sp and to prescribed velocities it over area
S,, S=SpuUS,. Moreover, since the surface does not vary in time, thus Sp=S,=0.

The principle of virtual power states that

IT'fldS= jo‘-VdV, (2.22)

where odenotes any stress field in equilibrium with the tractions T and strain
rate field V is derived from a velocity field u satisfying the prescribed
kinematical restraints. No connection whatsoever between orand V is required.

Let us suppose for the moment that there exist two different complete
solutions, in the sense of Sec. 2.1.5, satisfying the same boundary conditions
and corresponding to the same ultimate load intensity yx,, namely

¢, W,V and ", 4", V" for pupP. (2.23)

To answer the question of uniqueness of the stress field we apply the principle
(2.22) consecutively to the fields specified in (2.23) and obtain

fT-ﬁ'ds: fa’-V’dV: fa”'V’dV - J(a” — 6"} V'dV =0,
Vv
(224

J‘Tw'x"dS:J‘o-'-V"dV=f¢r”-V”dV = J'(o-'—c")-V"dV=0_
v

s v

In view of the convexity of the yield surface, both integrands are
nonnegative and therefore they vanish identically to satisfy the integral
conditions (2.24) and so the difference of the integrands must vanish too.

(6'—a") (V' =V")=0. (2.25)

The uniqueness theorem for rigid plastic solids states that for strictly

convex yield loci the stress fields of two complete solutions are identical

except, possibly, in the common rigid regions. In fact, due to the required

vanishing of the integrand in (2.25),

o'=0¢" if V#0, V'#£0

or (2:26)
e #e" f V=0 V'=0


http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

20 PRINCIPLES OF LIMIT ANALYSIS

For yield loci containing planes the integrand of (2.25) vanishes identically
when the stress fields belong to the same plane. Uniqueness can be established
by. employing a different procedure, [40].

Therefore in a rigid plastic structure which is at collapse under the
specified surface loads and for the prescribed surface velocities the stress field
is unique in the deforming region. The collapse mode, although not uniquely
defined, must be compatible with the stress field, i.e. be associated with the
stress profile on the yield surface. ‘

2.1.7. Discontinuities. A perfectly plastic material admits some discon-
tinultles in the fleld variables. In a real material it is rapid changes in the
quantity in question across a narrow region that are observed rather than
sudden jumps. Discontinuities admitted by the mathematical model appear
to be very useful in developing approximate solutions, [58]. Across a discon-
tinuity line I' a jump in a quantity G is denoted as

6] = G* — G R eY)

By considering a narrow zone across which the examined quantity suffers
a rapid change a pertinent information is obtained.

r

6°

6{’_ t
—== &/

6 ==

t
n
4An 4n
Fig. 2.4. Stress discontinuity line I"

Let us consider the situation shown in Fig. 2.4 and examine the stress
discontinuities admitted by the equilibrium equations (2.21) in plane stress.
Since do,/0n does not enter the equilibrium requirements suitable integration
yields the jump in the normal stress g, acting on the section perpendicular to
aline I',

k)

R

g
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An
do,

lim dn=[o,], (2.28)

Anmo J O
-An

while the remaining stress componénts are continuous across I'. The
magnitude of the jump (2.28) depends on the type of yield criterion.

r
+
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Fig. 2.5. Change in the principal stress ol 2 6,

directions across stress discontinuity
line

The continuity of o, and o0, leads to an appropriate relation
between the principal stresses on both sides of the discontinuity line,
Fig. 2.5, ‘

o7 cos?a + ¢ sinZa = o} cos?f + o sin2f
(2.29)
(67 — 03)sin2a = (¢} — a})sin2p.

The discontinuities admitted by the kinematical relation (2.19) for plane
situation, are

An An
. ou . Ou, O, .
lim | -‘dn=0, lim J‘<~"+——)dn= u
anmp J. O anmo J\ O On L]
-An -An
and (2.30)
An
. Ou, , .
lim E dn = [u,,].

An=0
-An

_ On the discontinuity lines of velocity fields (2.30) the following amount of
the energy is dissipated:

An
dr=lim | o, Vydn= 0, [i]+0,0) @31)

An=>0
-An
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The above integral components of the deformation localized in yielding
bands can be represented. in generalized variables of the plate theory. Thus,
curvatures and deformations of the reference plane will be represented by
discontinuities in slopes and in-plane displacements, respectively, [28], [29].
Because of the continuity condition for deflections, a slope tangential to the
band must be continuous.

On the other hand, in the absence of membrane forces (as is the case
within this book) displacement jumps in the reference plane are irrelevant.
Therefore, the only meaningful generalized variable is the curvature normal
to the band of localized deformation, Fig. 2.6, which, when integrated across
the band width, gives a discontinuity in slope:

An

. (oW oW _
lim '[ o dn = I:é;’{| =9,. (2.32)

An=>0
-An

The band of the localized deformation (yield line) represented as a discon-
tinuity line can be considered as a simple plastic hinge.

t} 4

n,G,

B

Fig. 2.6. Plastic hinge

For completeness let us write down the expression for the dissipation per
unit length of the hinge line defined in (2.32),
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dr=M, ®,, (2.33)

where M, is the normal moment across the slope discontinuity line.
Whenever kinematical discontinuity lines appear the expression for
internal dissipation contains line integrals

Dy = J 0y VisdV + Zfdrdl, 2.34)
14 [

where dl is a line element of I' and summation is extended over all the
discontinuity lines.

2.2. Generalized variables

In the mechanics of thin plates and shells the equations of equilibrium are
expressed in terms of stress resultants, namely membrane forces N;j, moments
M;; and shear forces S;, ij=1,2. For thin structures (H/4«l) the above
magnitudes are defined as follows:

H

H H
M= j“ijZdZs Ny = J‘Uijdly S = J\G,-,,-dZ, . (2.35)
“n hyt “r

where 2H is a thickness of the structure. These magnitudes are further k
referred to as the generalized stresses O, k=1,..,n.

Since internal actions enter the equilibrium and boundary conditions in
the form of generalized stresses it is necessary to express also the yield criteria
in terms of generalized stresses.

The yield condition expressed in terms of generalized stresses is called an

~ interaction condition,

F(e)=0 = FMLN,S)=%Q)=0
or @36)

f6)—c=0 = F(Q=C=0

where C is a vector of structural constants. For the bending of plates such
constants represent, for instance ultimate moments per unit length of cross
section.

In Fig. 2.7a,b the stress distributions at collapse for a homogeneous and
reinforced plates are shown; below the resulting ultimate moments are
specified, respectively.
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Fig. 2.7. Stress distributions at collapse for (a) homogeneous, (b) reinforced cross-sections

The interaction condition (2.36) is visualized in the n-dimensional space of
generalized stresses in the form of a closed interaction surface.

Generalized strain rates q are associated with the generalized stresses Q by
the requirement that the dissipation remains invariant under the transfor-
mation of variables,

D=jo--VdV=jQ-i]dA. (.37
A

v
For example, since the power of dissipation for thin structures is

d=M;K;+ Nj;A;+ S;v, (2.38)
where the rates of the curvature K, velocities of elongations i,»j and rates of
shear strain y, are generalized strain rates associated with generalized stresses
Mj;, Nyj, and ;.

The interaction function #(Q) constitutes a potential for the generalized
strain rates. This means that the associated flow rule applies also in the case of
generalized variables

o
0Q’
In general, the interaction surface (2.36) has singularities where the normal to

the surface #=0 is not uniquely specified. Then

. 0F :
q= Vi?d, v; 2 0. (2.40)

q=v v>=0. (2.39)
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Derivation of the yield conditions in terms of genéralized stresses is an
essential part of the theory of plastic structures, [62], [74].
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Fig. 2.8. Bending and stretching of beam: (a) generalized stresses, (b) stress distribution at
collapse, (c) generalized strain rates

A simple example of combined bending and stretching of a beam
will illustrate the transformation procedure. The beam is of rectangular
cross-section 2H x B. The stress distribution at collapse is specified to
within a parameter {=2/H, Fig. 2.8b. The resulting bending moment
and axial load are

M=qBH (1-&), N = 2q, BHE, (241)

where ¢, denotes the yield stress of the material in uniaxial tension or
compression; positive directions of the generalized stresses M and N are
shown in Fig. 2.8a. The ultimate moment M° and axial load N° of the
cross-section is readily calculated as:

M° = BH'g, N°=2BHg,. (242)
Elimination of £ from (2.41) results in the expression
M N 2 .
y_ﬁ+<ﬁ) —1=0. @43)

An analogous parabola corresponds to the negative bending moment. The
interaction curve (2.43) as a result of the transformation of the yield criterion
F=0¢+0,=0 into #(M,N)=0 is shown in Fig. 2.9.

In the considered example, under the condition that plane sections remain
plane, the velocity distribution is

é=A+zK, (2.44)
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Fig. 2.9. Interaction curve for bending and stretching of beam with rectangular cross-section

where 1 denotes the rate of axial elongation of the beam and K is the rate of
curvature, Fig. 2.8c. Inserting (2.44) into (2.37), we obtain the power of
dissipation per unit length of beam:
H
d=B | c-¢dz=N-1+M-K. 2.45)
-H

Hence, the generalized strains for the considered problem are J.and K. For the
mechanism shown in Fig. 2.8¢c we find

A 2M°
= = = N. 2.46
&~ gy @49
On applying (2.39) to (2.43) the associated flow law takes the form
: 2N : 1
A= V(_N_ﬂ)—z, K= Vﬁ. (247)

Elimination of v from (2.47) leads to the second equation of (2.46).

2.3. Intersections and projections of interaction surface

When certain stress resultants are neglected or when additional kinemati-
cal restraints are imposed, #(Q)=0 can be simplified in the sense that its
respective projections or intersection are used, [69].
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If Q;, i==k+1,..,n, vanish, the interaction locus constitutes an intersection
of the general interaction surface with the planes Q;=0. The corresponding ¢;
do not necessarily vanish and are to be keept in the kinematical relations.

Such a situation occurs in the case of the beam described in the preceding
section when N= + N°, M =0, and the rate of curvature K does not have to
disappear (poiu. 4 in Fig. 2.9).

When ¢;=0, i=r+1,..,m, additional kinematical restraints are imposed.
Therefore the corresponding Q; become reactions. They can be eliminated
from #(Q,)=0, i=1,..,m, since the above restraints give (m-r) relations
between the m stress resultants. In geometrical terms §,=0, i=r+1,.,m
means that an orthogonal projection of #(Q)=0 onto the subspace of
r-dimensions is then used. The boundary of such a projection constitutes then
the appropriate interaction locus in the r-dimensional space. Nevertheless the
reactions Q;, i=r+1,..,m enter the equilibrium equations.

An example of such a situation is furnished by the thin plate theory. The
Kirchhoff-Love hypothesis (j; = 0) means that the generalized strains
corresponding to transversal forces S; are absent and, therefore, the latter
should not influence the interaction condition F(Mj;, N;;)=0.

2.4. Admissible states

Set of generalized stresses Q; and generalized strain rates g; in a structure
are known as fields of the generalized stresses and strain rates, respectjvely.

In the limit analysis of structures it is convenient to use a notion of
a statically admissible stress field Q°(x) and a kinematically admissible field
of displacement velocities u*(x).

2.4.1. A statically admissible stress field Q° satisfies:
a) the equilibrium requirements within the body

L;Q; = u, B, (2.48)

where L is a differential operator,

b) the prescribed stress boundary conditions,

c) does not violate the interaction condition. The value of % (Q)
computed for Q°=Q0°(x) gives a stress profile which remains within
the interaction surface, i.e. (Q)<0 throughout the body, Fig. 2.10,
line OBC.

To evaluate y, we use the property that at every point of the structure

a statically admissible generalized stress can be written as follows:

Q°(x) = pu,¢(x). (2.49)
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[%

Fig. 2.10. Admissible states: statically admissible stress field Q° and kinematically admissible
strain field q* with associated stress field Q*

Let us assume that the interaction condition # (Q)—C=0 is a homogeneous
function of degree n in the generalized stresses. The requirement that at each
section of the structure stresses remain within the interaction surface, e.i.
Z(Q®)<C, yields the inequality uf g(x)<C, where g(x)=¢({(x)). The
statically admissible load multiplier is therefore defined as

. C
4 = min —. 2.50)
£ ¢
For a selected statically admissible stress field Q° the relation (2.50) allows
to calculate a multiplier specifying the load intensity at which the interaction
surface is not violated. Practically speaking, p, is computed by requiring that
the yield condition be satisfied at least at one point of the structure.

2.4.2. A kinematically admissible velocity field u* satisfies:

a) the prescribed velocity constraints on the surface of a structure as well
as the required continuity conditions and kinematical constraints
within the structure, )

b) leads to a strain rate field q*=q*(u*)#0 satisfying the continuity
requirements of internal constraints imposed by the associated flow
rule and chosen interaction condition,

c) the requirement that the rate of external work D, .done by the actual
loads on the assumed velocity field is positive,

g T i

BOUNDING THEOREMS 29
Doy = ﬂ,JP cu*dS > 0. 2.51)
s

Once a velocity field * is chosen, the associated stress field Q¥ is specified
by the plastic potential flow law as shown in Fig. 2.10, since, to commence
plastic motion, the yield condition must be satisfied. The stresses Q* do not
have to satisfy the differential equations of equilibrium (2.48). The rate of
internal work Dy, is fully specified by the velocity field a* since the strain
rates are functions of them,

Dy = f Q* - ¢*dV = fd(ti*)dV. (2.52)
v V-

Kinematically admissible velocity field u* is associated with the kinemati-
cally admissible load multiplier y, defined as

W = Jd((i*)dV/ J‘P ca*ds. (2.53)
s

v

2.5. Bounding theorems

The solution of a limit analysis problem specifies the stress field and the
collapse mechanism under the ultimate load. Complete solutions are usually
difficult to obtain due either to nonlinearity of yield conditions or to a large
number of domains governed by different sets of field equations for piece-wise
continuous yield loci. The quantity of the greatest interest for the stress analysts
is the ultimate load. This quantity can be bounded from below and from above
with the help of two extremum principles of the limit analysis theory.

In the bounding theorems the notions of a statically admissible stress field
Q¢ and of a kinematically admissible velocity field a* are employed. With
these fields are associated the statically admissible load multiplier p, and the
kinematically admissible load multiplier y,, respectively.

For a given problem there virtually exists an infinite number of statically
and kinematically admissible states. Each of them corresponds to a certain
value of the load multiplier specifying the intensity of loading. Two
fundamental theorems of perfect plasticity allow to arrange these values so as
to bound the load intensity corresponding to the complete solution.

2.5.1. The lower bound theorem states that any statically admissible load
multiplier p, is smaller than or equal to the ultimate load multiplier g,.
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To prove the theorem the principle of virtual work and the property of
convexity of the yield surface are used, [18], [56], [59]. Let Q, 1, 4 and p,
represent the complete solution of the boundary value problem for incipient
plastic flow, whilst Q° and p, correspond to a statically admissible field.
Hence (Q— Q) is in equilibrium and satisfies the stress boundary conditions
whereas u satisfies the kinematical constraints. Therefore the principle of

. virtual work applied to these fields takes the form

(s — 1) fP - dS = f (Q-Q) - qar. (2.54)
s v

The integral on the left-hand side is positive by virtue of (2.51) since u is-

kinematically admissible. The second integral is nonnegative since its
integrand is nonnegative in view of the convexity of the interaction surface
and an associated flow rule, Fig. 2.11. Hence

My — 4 20 (2.55)

as stated in the theorem.

Fig. 2.11. Illustration of bounding
~ theorems

2.5.2. The upper bound theorem states that any kinematically admissible load
multiplier p, is larger than or equal to the ultimate load multiplier p,.

To prove this theorem consider two solutions as above: Q, 1, § and p,
represent the complete solution of the problem whilst i*, ¢*, Q* and Hy
characterize the kinematical solution. The stress field Q* and the kinematical-
ly admissible load multiplier y, are associated with r*, * via the flow law in
which the plastic potential is accepted. Rewriting (2.53), we obtain

BOUNDING THEOREMS 31

yij W dS = jQ* Sqrav. (2.56)
s v

For the stress field Q, load p,P and kinematically admissible velocity fields
u*, q* the virtual power principle holds true,

uujP cu*dS = fQ S qrdv. 2.57)
v
Subtracting (2.57) from (2.56) we get

o = 1) f P a*ds = j @Q* - Q- q*av. (2.58)
s v .

The integrand on the left-hand side is positive by virtue of (2.51). The
integrand on the right-hand side is nonnegative due to the convexity of the
interaction surface, Fig. 2.11. Hence

Be— by =0 @.59)

The two fundamental theorems can thus be combined to bound the
collapse load multiplier,

By Sy S Hy (2.60)

2.5.3. Important corollaries of the theorems

a) The collapse load multiplier u,(#*) furnished by the exact solution
obtained for #*=0 circumscribing the actual interaction locus # =0
is an upper bound on the collapse load multiplier u,(#) for the original
locus & =0.

b) The collapse load multiplier u,(#°) furnished by the exact solution
obtained for #°=0 inscribed in the actual interaction surface F =0
is a lower bound on the collapse load multiplier u, (%) for the original
locus # =0. )

This can be summarized as follows:

w(F) € p,(F) < p, (F). (2.61)

The bounding theorems also hold true if certain stress and strain rate
discontinuities are admitted.
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CHAPTER 3

PLATE EQUATIONS

3.1 Basic relations

A plate element in the Cartesian coordinate system is shown in F ig. 3.1,in
which the adopted sign convention can also be seen. We shall consider
bending of transversely loaded thin plates under the assumption that straight

normals remain straight and that changes in geometry in plastic flexure are
negligible. '

1t follows from these assumptions that the deformation of the plate is -

entirely defined by the displacement W(X,Y) normal to the middle surface.
The displacement rates in the directions of the coordinate axes are

ow oW
X’ Y’
Therefore the strain rate tensor is

Vi=—-ZWy, ij=XY,Z. (3.2)

[.].V:_Z Uy=—Z

U, =WwX,)Y). @31

BASIC RELATIONS 33

The total power of dissipation (2.10) per unit area across the thickness of the
plate is given by

"
d= J o;Vy;dZ =
“m

. " . H . H
oW W 4 .
= — — —2—— =
e f o, ZdZ +( 77 ) j 0,2dZ + < 6XBY> f Tyy ZAZ
-" -" -H

= MK, + M,K, + MK,, (3.3)

where 2H is the plate thickness, Fig. 3.1, Moments per unit length are
defined by
. H
M;= fnijZdZ, ij=XY 34
—H

and the curvature rates of the middle surface are

Fi3 4 . *>W . >W
K = — —— = ——_— - ) = T .5
= D vz - Ko 9XoY 33

For the bending of thin plate the generalized variables are the moments and
the curvature rates defined by Egs.(3.4) and (3.5).
The stress state in the plate under bending is described by the moments

M;; and shear forces S;. All the relevant equations will be written down in
terms of the dimensionless variables defined. as follows:

X Y z . HW . . . . . ,
X=7, Y=y.I=7, W=, k,=HK,, x,=HK,, K.,,=HK,,
M, M, M, S.L S,L
M= Mg M= T e ST 3
PL? PL 0

(3.6)

where P(X,Y), P(X,Y) denote the distributed pressure and the line load,
respectively, and Q stands for the point loading. L denotes a reference length
and M is the unit ultimate moment

"

M =2 f%Zdz = g H2. 3.7

0
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In terms of variables (3.6) the power of dissipation per unit area of the plate
becomes
0 . . .

d= T (m,c K, + myK, + mxy_tcxy). (3.8)
The system of equations governing plastic flexure of plates consists of the
equilibrium equations, the curvature-deflection rate relations (3.5) and the
plastic potential flow law associated with an-interaction condition.

The equilibrium equations are

om;  omy, omy, ~ Om,

0x oy R ox oy

=Sy’

(39

Os, | 0Os,
x 6_y = —p. (3.10)

At incipient plastic motion the moments satisfy the interaction condition

Fln,, my, my,) = flm,, my,my) — 1 =0. (3.11)

The influence of transverse shear on yielding is here neglected. The
stresses and the deformation rates are related by a flow rule. The associated
flow law states that in the considered case the curvature rates (3.5) are related
to the interaction equation (3.11) through the normality rule.

. 0F OoF OF
Ky Ky K = v(—, — ) v >0 (3.12)
v om,’ om,” Omy, z

A system of ten equations (3.5) and (3.9) through (3.12) is obtained
in ten unknowns, namely three moments, two shear forces, the deflection
rate, three curvatures and the flow multiplier v. In plastically deforming
regions where v > 0 they reduce to the following set of four equations,
consisting of (3.11) and

m, *my, ~ *m,
=0 3.13
e T oxdy + dy? tr ’ 313
’w 9w 82w
ax? dxdy 0
oF 2 oF aF G149
om, Omy, om,

After this system is solved it remains to check whether v > 0 in the plastic
zones.

INTERACTION SURFACES FOR ISOTROPIC PLATES 35

3.2. Interaction surface for isotropic plates

For thin plate in bending, in which the membrane forces N = 0 and the
influence of shear forces on yielding can be neglected, the strain rate tensor
components, according to the Kirchhoff-Love assumption (3.2), are in
proportion to the distance of a considered layer from the middle surface.
Thus the rate of curvature vector has the same direction for each layer of the
cross-section. Hence, when a yield condition is symmetric with respect to the
centre of the coordinate system, the stress state of the cross-section is
independent of z-coordinate. Bending and ultimate moments according to
(3.4) and (3.7) are as follows:

H
My = j«rij(X.Y)ZdZ =o;(XH, M =g H, ij=2XY (315
-H

and in the dimensionless variables (3.6) one obtains
(3.16)

which means that for the relevant case the interaction surfaces are of identical
form as the yield condition in plane stress,

ay; '
f(;’) =/(m;) = 1. (3.17)
0
my,
H(1//3, 2//3)
A1)
ﬂ o
o B(10) m,

Fig. 3.2. Interaction surface g 243-1/3) pli/3 -24/3)
for Huber-Mises plates !
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The Huber-Mises interaction condition for plates has therefore the same
form as the Huber-Mises yield criterion in plane stress, (2.5)

=m:+m:—mm, +3mZ = 1. (3.13)
y Xy 4

The ellipsoid (3.18) is shown in Fig. 3.2 by a set of level curves.
The plastic potential flow law results in the following dimensionless
curvature rates:

-
i

. v(me - my),
x, = v2m, — my), (3.19)
Kyy= 6vmy,, v=0.

The Tresca interaction condition for plates has the following dimension-
less form:

#=sup(|m,], [m], |m, —m,}) =1. (3.20
The condition (3.20) when transformed into the space of m,, m,, m,, consists

of two elliptic cones and an elliptic cylinder. The surface is visualized in
Fig. 3.3. Singular zones for the flow law can be noticed.

my

18 (1)

E

Fig. 3.3. Interaction surface for Tresca plates

INTERACTION SURFACES FOR ISOTROPIC PLATES ’ 37

The maximum principal moment interaction condition has the form

.Z:mx+my—m,‘my+m§,.——l=0,
3.21)
F =

= —m, —m,—~mm, + m, — 1 =0

The interaction locus consists therefore of two coaxial elliptic cones intersect-
ing on the plane m, + m, = 0. The cones defined by (3.21) are the same as in
the case of the Tresca condition, dashed lines in Fig. 3.3. The only difference
is that now they define the entire interaction surface.

For reinforced concrete plates the interaction condition depends on the
amount and arrangement of reinforcement. In the case of isotropic reinforce-
ment of different intensity at the top and bottom surface of the slab the
interaction condition has the form

Fo=m +m —mm, +mi —1=0,
: . (3.22)
F=—Am, — Am, — m.m, + mi, — (4) =0,
Mgtop Mglop

where A" = = is the top steel coefficient.

1 f0bottom 0bottom
M M3

This surface is shown in Fig. 3.4. The rectangle ABCD at m,, = 0 represents
the Johansen condition.

my
] A —
DEALIO) |7 —AA(110)
~ P
N ///
\\ //,
XK
7N
/
; AN

1 m,

\ e
\

" CEAA B(1-A,0)

Fig. 3.4. Interaction surface
for reinforced slabs



http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

38 PLATE EQUATIONS

The maximum reduced stress yield condition (2.9) for plates takes the
following form: .

1
sup (|my — 5myl, |m, —

1 1
3 —my), i|m1 +m,) —1=0 (323)

2

It represents two truncated cones in the space of bending and twisting
moments. The advantages of such an interaction surface for bounding
procedure in the limit analysis of plates was pointed out in [74].

3.3. Analysis of plate equations

The equations of plastic bending involve, in the case of regular interaction
loci, one algebraic equation (3.11). By a suitable choice of variables this
equation can be made identically satisfied and the obtained system of partial
differential equations can eventually be identified as to its type, [20], [73], [78].
Denote

20 = m; + m,, 2y =m, — m, (3.24)

where m,, m, are the principal moments. The interaction condition can
therefore be written in the form

F(my) = — ¢(w) (3.25)

representing a closed convex curve in the plane of invariants (3.24).

3
_y_ f1-u
F=¥ —.?u 7 E:lw;’- 'm,
%)
5
F Vw1 o E=¥rw-1
T 05 a5 i >
£=Welo-1 05 £ =¥-wil
L1
/j m
Ly, flou? -
Fays fl g.w.zl

Fig. 3.5. Huber-Mises and Tresca interaction curves in the plane of invariants e, ¥
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The Huber-Mises and the Tresca interaction conditions in the new
coordinates w and y take the following forms:

Huber-Mises ——
2
F= o+ \f 3m , (3.26)
1

Fa=VF5 Fu-V+0Fl Fe=y -0+l (2)

Tresca

They are visualized in Fig. 3.5.

Referring the stress state to the coordinate system rotated with respect to
the principal lines so that the x-axis makes an angle 0 with the positive
direction of the second trajectory, Fig. 3.6, the stress state can be defined in
terms of w, ¥ and 0, namely

m

. = o + Ycos20, m, = w — Pcos20, m,, = Ysin20. (3.28)
y
2
]
A
Fig. 3.6. Principal bending moment e
and curvalture trajectories ;

The following set of quasi-linear partial differential equations is obtained
combining the equilibrium equations (3.9-3.10), (3.28) and the interaction
condition (3.25)

(1 + ¢’ cos20) o . — 2¢psin20 0, + ¢’'sin20 w , + 2¢ cos20 0, — ¢, =p,,
(3.29)
@'sin20 o, + 2pcos20 0, + (1 — ¢'cos20) + 2¢sin20 0 ,+ ¢ =p,,
whereas the relations concerning kinematics (3.5), (3.27), (3.28) and the flow
law result in .

21/'v'xx = v(¢p' — cos20), 2w,w = v(p’ + cos20),
) (3.30)
2w 4, = —vsin20.

in the above relations R
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2

and ¢ ig a shear potential chosen so as to satisfy identically the vertical
equilibrium condition (3.10),

=2 — 1 pa ! 3.31
‘P—%: Px——ipx, Py = —= lpdy (3.31)

Sy =y + Doy 8= —b. + p,. (3.32)

Equations (3.29) and (3.30) involve five unknowns, namely ¢, 0, w, e and v.
A prerequisite for the solution of a boundary value problem as a system of
quasi-linear partial differential equations is the determination of the type of
the system. This is done here by referring the system of equations to the
principal lines of moments and curvatures, thus putting 6= 0.

By eliminating v from (3.30) we obtain the equation, specifying the
displacement velocity w in terms of the interaction function, (3.25),

I+ )W + A = @), =0. (3.33)

The type of equation is disclosed by examining the characteristic
determinant of the system composed of (3.33) and of the differentials dw ),
d(w ), namely

dx dy 0
0 dx dy |=0 (3.34)
I+ 0 1-—¢

which results in the following equation for the characteristic directions

dy\* ¢ — 1
(&) -2=1 639
Depending upon the actual value of ¢, Eq.(3.33) is either elliptic or
hyperbolic or parabolic, the following variation of the interaction condition
with the mean moment w. If the right-hand side of (3.35) is negative no real
characteristic direction exists and the set is elliptic. When the right-hand side
is zero the equation is parabolic, when it is positive the set of equations is
hyperbolic.
It can be further observed that the discriminant of the second fundamen-
tal form of the deflection velocity is
vZ

W Wy — (Vh".xy)2 = Z((P'2 - 1). (3.36)

Hence the deflection velocity can be either of positive or negative or zero
Gaussian curvature. The deflected shape depends on the interaction condition.
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We shall return to the system of equations consisting of (3.2.9). and
(3.30). Since the deflected surface has been discussed above we e-hmmate
w from (3.30) on computing higher order derivatives. The relatlons»are
obtained which, combined with (3.29), make a complete set of equations
for w, 0, Y and A=Ilnv

"o — 2sin20 8+ (¢" + cos20) A, + 2cos20,, +sin20 A , = 0,( -
X WX > 3.
@"w,, + 2c0s20 0, + sin20 A, + 2sin20 0, + (¢" — cos20) A, = 0.

In the case of a system of quasi-linear partial differential equations
Ayl + Byéiy =G, ij=12,..n (3.38)

for n unknown functions £(x,y) the type of the set (3.38) .is established by
considering the eigenvalue problem for the following matrix

| By — 44;1 =0, (3.39)
where 1 = dy/dx. )
For the considered system of equations (3.29) and (3.37), appropriately
simplified by referring it to the principal directions as coordinate axes, the
characteristic determinant becomes

—A(1+¢") [ -1 0
1-¢' —Ap -1 0 .
¢ ’ =0 (3.40)
—lo" 1 0 —A1+9)
0" -2 0 —(Q1-9)

The requirement that the determinant (3.40) vanish yields the following
equation for the characteristic directions:

2
1+ @) —2220200" + 0%~ 1) +{1 — ¢)* =0. (3.41)

The system is hyperbolic, thus it possesses four characteristics provided
the roots of (3.41), considered as a quadratic equation in A2, are real and
positive. Computation shows that the roots are real if

400" (09" + 0”7 = 1) > 0. (342

Since the interaction curve (3.25) is convex it is either p¢"” < 0 wheg _(p(w) is
nonlinear in the mean moment w, or ¢¢”= 0. A necessary condition for
a nonlinear interaction condition to result in real roots is therefore

"¢ + 9" — 1<0. (3.43)
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However, both roots 12 and 12 of (3.41) are related as follows:

200" + ¢ — 1)
. 3.44
Taxey (3.44)

2
PrUFIN il M N o)

2T+ )

These relations result from the properties of quadratic algebraic equa-

tions. The first one indicates that both roots are of the same sign, the second
one states that the necessary condition for the roots to be positive is

200" + ¢” — 13 0. (3.45)

The requirements (3.43), (3.45) and @@’ < 0 can never be satisfied simul-
taneously. Hence there is no real characteristic direction and the considered
system of four equations in w, 0, ¢ and A is elliptic whenever @(w) is
non-linear. If, however, the interaction condition (3.25) is linear in the mean
moment o, thus

¢ =aw + b, (3.46)

the two roots of (3.41) coincide and the characteristic directions are

dy\?  a-—1
(a’x> Ta+l 347
Hence the equations (3.29) and (3.37) are elliptic if |a| < 1, hyperbolic for
Ja|> 1 and parabolic with a quadruple characteristic at @ = 1. Characteristics
coincide then with one family of the principal directions.
For piecewise continuous interaction conditions stress régimes exist where
@ is not uniquely defined. The stress state satisfies then simultaneously two
interaction equations

Vo=@, V=g, (348)

so that w=w, and y =y, are fixed. The relations (3.29) become a pair of
equations for 0 and ¢

—2y,sin20 0 . + 2,c0820 0, — ¢, = p,,

(3.49)
24,c0820 0 + 2,sin20 0, + ¢ = p,
with the characteristic determinant
cos20+ Asin20 1 )
=0 (3.50)

sin20— Acos20 A

Hence, if , =0 the characteristic direction is not defined and any curve may be
considered as a characteristic in the zone of isotropic bending where m, =m,.

DISCONTINUITIES 43

If f, #0 the system (3.49) is always hyperbolic the characteristics being

dy

= = tand, A &

1 2 == cotand, (3.51)
i.e. they coincide with the trajectories of principal moments. For a corner ‘
point where (3.48) hold the kinematical relations (3.30) take the form

20 = v, (@] — cos20) + v, (p, — cos20),
2w, = v, (p] + c0s20) + v, (p; + cos26), (3.52)
2v'v,,"v = —(v, + v,)sin20.

Elimination of v, and v, yields the following equation for the deflection
velocity

W — 2cotan20 w,, — w,, = 0. (3.53)

Eq. (3.53) is hyperbolic, with characteristics given by (3.51). Hence
principal directions of moments and curvatures coincide also for singular
stress régimes. The deflected surfaces has a saddle form.

3.4. Discontinuities

The preceding discussion has shown that in plate problems non-elliptic
equations may occur and therefore certain discontinuities in the field
variables may appear. Distinct analytical solutions can be matched along
certain characteristics.

Discontinuities be present both in the derivatives and the field quantities
themselves. We shall consider variations of the field quantities across
a narrow strip 2An adjacent to a stationary discontinuity line I.

Equilibrium equations (3.9) and (3.10) admit the following jumps.

[plAn + [s,] = 0, [m,] = [s.]An, [mn] = 0. (3.54)

If there is no line load on I' then [p] in (3.54) is finite and the shear s, is
continuous across the discontinuity line as An = 0,

[s,]J=10 onrI. ~ (3.55)

The equilibrium requirements do not impose any restriction on s, and m,.
These quantities are thus not necessarily continuous across I

In the plate theory only two stress conditions can be prescribed on a plate
boundary. If, therefore, we consider a stress discontinuity line as a boundary
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line between two parts of a plate then instead of (3.54) only the following two
continuity requirements can be imposed:

) -
[m] = 0, [s, + gr"] = 0. (3.56)

Eq. (3.56) results in a nodal force of magnitude +m,, at the ends of the
discontinuity line and, specifically, whenever I meets the plate boundary.

Consider discontinuities admitted by the kinematical relations. A discon-
tinuity in the displacement rate w is excluded a priori in a theory not
accounting for the transverse shear deformation. Hence

[w] =0 (3.57
and also [w]=0 [wa]=0 (3.58)
if continuity in w is required. -

For a stationary discontinuity line the normal derivative of the deflection
velocity may be discontinuous,

[w.] # o. (3.59)

The discontinuity in v'v‘,, involves indefinitely large values of the second
derivative in a narrow region. It value becomes infinite in the limit

lim (w,,) = o (3.60)
An=0p
whereas it is possible for »'v,,,, and v'v,,, to remain finite. In this case
: 2W
lim { —=—— (3.61)
An=g \Wun — W

tends to zero on I' and the normal and tangential directions to I' are
accordingly directions of principal curvature rates. Thus putting 0=0, the
kinematical relations (3.30) become

Wp=v(p —1), 2w, =v(@ +1), v#0 (3.62)
According to (3.60) and in view of the second equation of (3.62)

lim fwdn =[] #0 (3.63)

An=0 2

so that v assumes indefinitely large value if ¢’ remains finite.

The condition of isotropy requires the principal curvature rate directions
to coincide with the principal stress directions, Fig. 3.6. Thus on crossing the
trajectory corresponding to =0 the moment field suffer a jump. It value

i
™
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[m] = 2[w] (3.64)

is found by using the definitions (3.24), when m,=m, and m,=m,, and the
first condition of (3.56).

3.5. Bounds on the collapse load

Complete solutions in the limit analysis of plates can effectively be
obtained only for a narrow class of interaction criteria and boundary
conditions. It is therefore often necessary to use the bounding. theorems to
establish bounds on the collapse load.

The upper bound on the collapse load multiplier (2.53) takes, for
a transversely loaded plate, the form

D . .
by = D*": = JM,-,-KudA / fl’u Wadd, (3.65)
A A

where P, specifies the spatial distribution of load so that P=puP . In terms of -
the dimensionless quantities defined in (3.6) the kinematically admissible load
multiplier becomes

W= ffm;,kijdxdy/ J‘poy'vdxdy. (3.66)

The rate of internal energy dissipation represented by the numerator
of (3.66) can be expressed in terms of kinematical variables. To this
end we replace x; by their values furnished by the associated flow

law. The integrand becomes then (v%m,-j). For the interaction conditions
which are homogeneous of degree n in the stress variables, i.e.
%mu = nf(my;) and #(m;) = 1, we obtain the kinematically admissible
load multiplier in the form

W= nJ‘J‘v dxdy [ ffpo w dxdy. (3.67)

Eq.(3.67) indicates that the magnitude of , differs for the same admissible
velocity field depending upon the interaction condition. In the case of

- Huber-Mises condition (3.18) which is quadratic in bending moments, n=2,

we have
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1 . L. U U
V= ﬁ\/;cj'é—l—1cxlcy+ ©2 +kazy (3.68)

and therefore, remembering the displacement-curvature relations (3.5), (3.67)
takes the form

2 = s - :
ﬁ J\\/w?xx + W W,y + Wiy + why, dxdy

Hye
J J Py W dxdy

For the Tresca condition the rate of internal cnergy dissipation,
if expressed in terms of the principal curvatures k,,, k,,, takes the
following form:

(3.69)

1 . . . .
J:[V dxdy = EJ‘ Uryyl + 1555 | + [5yy + K5, |) dxdy. (3.70)

An analogous relation applies for the maximum principal moment condition:

J‘J‘v dxdy = %J:[(Ikd + |#,,]) dxdy. 3.71)

For discontinuous velocity fields, energy is dissipated on the discontinuity
lines as well. For plates in bending it is only slope discontinuities of the
deflected surface that are allowed for, as shown in (2.32), so that the
contribution of a system of hinge lines is

Dr =MLY |m,- &,d. (3.72)
1

Explicit form of the internal dissipation across the hinge line is

Dr = aM°LY J¢ndl = oMLY Km>dl’ (3.73)

where [)i),x 1, [{v‘y ] denote the jumps in partial derivates of the displacement
rate across a hinge line. The multiplier o takes the value a=1 for the
Tresca condition and a=2/,/3 for the Huber-Mises condition. The collap-
se load multiplier in the presence of slope discontinuities is defined as
follows:
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Do+ D
=~ (3.74)

ext

where D denotes the energy dissipation rate in continuously deforming zone,
i.e. where w is twice continuously differentiable, (3.8).

Lower bound to the collapse load can be obtained by selecting the
bending moment field MY (X,Y,C;) in equilibrium with external load and
containing a number of parameters C; . A bound is dbtained on putting the
moment field into the interaction condition and choosing the magnitudes of
the parameters so as not to violate the interaction condition. The best bound
in the considered class is

L1
Y T , (.75)

for the interaction condition homogeneous of degree # in the moments, i.e.
Al mi) =y £(mfy). '
For the Huber-Mises interaction condition the load multiplier amounts to
1

2
Fs = max ((mQ)F — mimd + (mOy + 3(md)0)

(3.76)

The exact collapse load multiplier y, corresponding to the -complete
solution lies within the range (2.60).
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CHAPTER 4

CIRCULAR PLATES

4.1. Equations

In rotationally symmetric loading and support conditions plastic bending
of circular and annular plates is governed by ordinary differential equations.
The net of principal lines of moments and curvatures defines a system of polar
coordinates on the plate middle surface. A plate element and the coordinate
system R, 6 are shown in Fig. 4.1 where the adopted notation and the sign
convention for the stress resultants as well as for the deflection velocity are
also specified.

Fig. 4.1. Rotationally symmetric
plate element in polar coordinates

EQUATIONS ) 49

We shall consider plates subjected to loading distributed over the middle
plane. Dimensionless variables are defined as follows

LR AW
A o
M, M, SL
m'=W’ mB:ﬁ’ S,=S=W, S9=0; (4-1)
pPL? _ PL
= g

Bk I’i=m, q=m,

where P, P, denote the distributed pressure and line load, respectively, Q is
a concentrated load and L stands for the plate radius.
The dissipation rate per unit area of the middle surface becomes

M° .
d =?(m,x, +mgico) “4.2)

where
&=HK, =HK,, @3)

and K,, K, stand for the curvature rates of the plate middle surface.
The kinematical relations are

. Y w’
K,=—W', Ky= - 44)

where prime denotes differentiation with respect to r.
In terms of the dimensionless variables (4.1) the equilibrium equations
become

(rm,) — my — rs =0, sy +rp =0 4.5)
or, in another form

rm; + m, — my = rs

- q
= — dr — p. -1 .
rs Jp(r) r= Pt =

The equations (4.4) and -(4.5) are supplemented by the interaction
condition
F(m,my) =0 (4.6)

and the plastic potential flow law
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&, %,) = ( 0F va—ﬁ), vz0 @7

yo
om,”  om,

subject to appropriate generalizations in the case of singular stress régimes
-corresponding to the intersection of twe or more interaction loci.

In the considered case of bending without membrane forces the circular
plate equations split into two systems. Eqs. (4.5) and the interaction
condition written in the form m; = 8(m,) reduce to the following single
equation

(rm, ) — 8(m,) + fprdr + C = 0. 4.8)

i
B
\
i
i

| The problem thus becomes statically determinate provided the stress bound-
ary conditions are prescribed.

Stress fields in plastic bending can have some discontinuities. Under the
requirements [m,] = 0 and [p] = 0 the equations (4.5) yield the following
relation on a circumferential line of stress discontinuity

[rm:] — [me] = 0. “9

A circular hinge line forms in a plate when the slope of the deflected surface

w suffers a discontinuity [W'] # 0, and W’ = —x, = —v is there

" om,
indefinitely large. Then circumferential hinge corresponds to the points of the
interaction curve at which

T K, = —w = o, (4.10)
thus
o7
dm, _ omy
= a7 = @.11
om,

The deflection velocity is governed by the equation

. ., dmy
" g = 4.12
m"” 4+ w 0 ¢ )

r

which follows from (44) and (4.7) by elimination of v. When w is
established it is necessary to check whether the flow multiplier v is
nonnegative.
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4.2. General solution for piece-wise linear interaction surface

The problem of plastic flexure of a circular plate can easily be solved for an
arbitrary piece-wise linear interaction condition. We take a interaction
equation, linear with respect to m, and m,,

my = (1 —oa)m + f, @.13)

where o and f are constants relevant to each face of the polygon.
Equilibrium requirements (4.5), when combined with (4.13), yield the
following equation for the radial moment:

rm, + am, = f — J})rdr + C, “4.14)

C being the integration constant of the vertical equilibrium equation. The
solution of (4.14) for « # 0 is

1 D 1 1
= - _ - _ (x+1)
m, u(ﬂ+ C) + =g fprdr + il V4 dr 4.15)
and for o = 0 takes the form
m, = (f + C)lor — IG J}err)dr + D. (4.16)

The radial moment in a plate at collapse consists of a combination of
(4.15) or (4.16) satisfying the boundary condition$ as well as the imposed
continuity requirements.. We observe that the constant C changes only at
the jumps of the transverse shear, whereas D changes with the stress
profile.

The deflection rate field is described by (4.4), (4.7) and (4.13) so that

—w =, —w' =v@-—-1), v>0. @.1mn
Hence
W - we—1)=0 4.18)
so for a # 0 we obtain .
W=Ar+ B 4.19)
and for o =‘0 we get
w = Alnr + B. (4.20)

The deflection rate thus obtained is kinematically admissible if v > 0,
hence if
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v = —aqd >0, o # 0,
4.21)
vt = —A4 > 0, a=0.

4.3. Maximum reduced stress interaction surface

In terms of principal moments the condition has the form given in (3.23).
Hence, for a rotationally symmetric deformation the maximum reduced stress
interaction curve is described by

1

1 T |
max(|m,—smgl, |my=zml, SlmAml) =1 @22)

The respective hexagon is shown in Fig. 4.2.

Fig. 4.2. Maximum reduced stress interaction curve for rotationally symmeltric plates

The general solution (4.15) will be used in solving the limit analysis
problem for isotropic, simply supported circular plate. The loading and
boundary conditions have the following dimensionless form

= <r<l,
p = constant, 0<rgl @.23)

m0)=my0)=1, m,(1)=0, w(1)=0, w(0)=w,.

MAXIMUM REDUCED STRESS INTERACTION SURFACE 53

Consider the stress profile KBL, Fig. 4.2, allowing to satisfy the boundary
conditions. Two stress states are involved:

AB: my= —m,+2, a=2, f=2

4.24)
1 1
BC: m9=—2m,+1, x=73, g=1
For the stress régimes (4.24) the solution given in (4.15) results in
2
1—%, 0<r<n,
m = ) 4.25)
r l_r‘I/Z 2 §4 P
1—?2 (5——5(1 ——r§>)+g(l —-rz), ibsrﬁl .

where r, defines the radius of a circle across which the stress régime
changes (point B, m,=2/3, see Fig. 4.2). The radial moment at B is
subjected to the continuity requirement [m,]=0 and [m;]=0 since there
is no jump in shears. Hence

6r5/2 — 152 + 4 =0, P = 4.26)

leading to the result
K = 0624, p = 6852 @.27n

The deflection velocity (4.19) becomes

A r*+B,, o<sr<r,
W= 1 , 1 o (4.28)
4,72+ B,, np<r<l.

The requirements [w(z,)] =0, [W'(1))] = 0 together with (4.23) allow to compute
the constants
W, gy 4w
A 0 Bl=w 2=——3l€/20—-4’

1 : w2 (Bl — 4j’ 4

0 B, = —4,. 429
No hinge line occurs in the velocity field (4.28).

It can be verified that (4.21) holds good because for 0 <7 <1 both 4, and
A, are negative. The flow multiplier v is therefore found to be positive and the
solution is complete.
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For a clamped plate a hinge circle forms at the fixed boundary. Only for
the stress points 4 and D of the interaction hexagon of Fig. 4.2, where
—1/2<dm,/dmy<1, the slope discontinuity may be admitted.Therefore the
clamped ed ge belongs either to the stress régime 4 or D, the boundary moment
being m,= + 4/3, respectively.

~ At the plate centre w'(0)=0, the curvatures are finite and no singularity in
slope appears.

4.4. Tresca plates

4.4.1. Simple examples. For circular plates the Tresca condition has the form
F=max(|m,|, |m,|, |m, — m,|) — 1 =0, 4.30)

shown in Fig. 4.3. Each of the straight sides of the interaction hexagon (4.30)
defines a different stress profile and results in a different form of equations
(4.8) and (4.12) specifying the stress field and the deformation mode of the
plate, respectively.

m, .
] )(8 M
B me=1 -
A
my=m, +1 .
xf
x
C E -
-— 0 m,
) 2,
) : 3
4 A Fig. 4.3. Interaction curve for
D 3 rotationally symmetric Tresca

plates

Let us consider a simply supported plate subjected to linearly varying
pressure

p) =pr, 0<r<1 @.31)

and to the stress boundary conditions

TRESCA PLATES 55

m,(0) =1, m,(1) = 0. 4.32)

Assuming the entire plate to yield, we take the stress profile tracing the side 43
of hexagon, i.e. my=1, and a=1, §=1. This assumption will be proved
a posteriori. Eq.(4.15), satisfying the first boundary condition (4.32), becomes
r3
m, =1

L =Pz 4.33)

Using the second condition (4.32) the collapse load is obtained
P, = 12. 4.34)

The bending moments and the collapse load are obtained using the
equilibrium and the stress boundary conditions. The solution thus obtained
can only be said to be statically admissible and further analysis regarding
kinematical admissibility is needed.

To find the mechanism of plastic motion we put « = 1 in Egs. (4.18) and
(4.19), hence '

w' =0andw=Ar + B. . @39

The first equation (4.35) can be directly obtained by inspecting Fig. 4.3
since for the stress profile AB K,= —w"=0.
The kinematical boundary conditions are

w(@) =w,, w(l)=0 (4.36)
hence it follows from (4.35) that
w = wy(l — 7). @.37)

The profile 4B is therefore both statically and kinematically admissible
and represents the complete solution.

It can be seen that first of (4.21) is verified because A= —w, in (4.35) is
negative. The flow multiplier v is therefore found to be positive and for the
stress régime AB is
WT =59 4.38)

V=Ky = — .

and the solution is thus complete. Let us note that v=>oc for r=0. This means
that in the centre of plate a point plastic hinge occurs.

Solution for piece-wise continuous interaction conditions may involve
several different stress régimes, i.e. the stress profile may belong to more than
one side of the polygon (4.30).

As an example a clamped plate under uniform pressure p = constant will
be considered to illustrate such a situation. Since a negative moment is

[}
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expected to appear at the clamped boundary we assume that the stress profile
involves the régimes 4B and BC, Fig. 4.3. .

According to (4.18) with the stress régime BC, my=m,+1, a=0, the
following displacement velocity is associated

m W =0 (4.39)
and therefore
w=Alnr + B. (4.40)

The velocity field corresponding to 'neither the stress profile 4B nor
BC can satisfy conditions of both zero slope and zero velocity at
clamped edge. Hence a hinge circle must be admitted. According to
(4.10y such a hinge can form for the stress profile CD where m,=—1.
The stress profile for the solution runs over 4B and BC and the
stress conditions at the centre and the edge of the plate are established
as follows:

m@© =1, m) = —1. (4.41)
The stress profile changes at » = p, where
[m.(p)] =0, m(p) =0, [m(p)]=0 (@42)

since there is no jumps in shear forces at the corner B..
The integration yields

pr?
1———6 2 0<r<p,
4.43)
m, = Inr }4 ¥4
—1+—(1-5(1—p? “(1—r? .
+1np( 4(1 p ))+4(1 r?), p<rxl

The continuity of m, at the radius p where stress profile changes furnishes the
following equation, [23]:

3502 +2p1lnp =0 4.44)
whose solution is p= 0.730. The dimensionless collapse load is

6
p=; =112 @.45)

The deflection velocity is obtained in the form
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r

-, 0<r<p,
W p(1—Inp) &
A, (4.46)
W, Inr
T p<r<i
Inp—1

for the following kinematical boundary conditions:
w©) =w,, w(l) =0, [w(p)] =0, [w(p)] =0 @47
as novslope discontinuity is admitted at the corner B where

dm, L. @.48)
dmy

It can be checked that in both zones v>0, and therefore the solution is
statically and as well as kinematically admissible. The slope discontinuity at
the clamped edge is [W'(1)] = (lnp—1)7* .

Discontinuous stress fields can also form in rigid-perfectly plastic plates.
Such is the case in an annular plate. To find the stress profile it is necessary to
consider both the stress and velocity equations. Examples can be found in [19],
[45] and [72].

My
1=t r=b
a) <) B A
F \
) Flrsb
= ) | -1C 0| m,
al
L
e 5] (374
b Sr=a

C oM

Fig. 4.4. Annular plate: (a) support and load paitern, (b) deflection rates, (c) stress profile

Consider an annular plate subjected to a ring force as shown in Fig. 4.4.

The boundary conditions are

m(a) =0, m(l) = 0: w(@) =0, w()=0. 4.49)

To establish the stress profile we suppose that w > 0fora < r < 1.In
order to get a non-trivial solution satisfying the kinematical boundary
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conditions in (4.49), velocity field wmust have the extremum within the range.
Hence %' and, according to (4.4), also #, must change sign in this region. Since
w>0it is w(a)>0 and w'(a)<0 and respectively &,(1) <0 and &,(1)>0.

The signs of m, and K, must be the same to yield positive rate of the energy
dissipation. Therefore the stress profile of the régime AB (m,= 1, x=1) occurs at
the outer boundary, and of the régime FE (m, =m,—1,a=0)at theinner one. The
stress profile cannot run over 4BC since then m, would be positive throughout.

However, a transition from the velocity field w=_A, r+ B, in the zone AB
to w=4,Inr+ B, in EF such as to preserve slope continuity and to satisfy the
boundary conditions is impossible. Therefore hinge circles should develop at
the stress state satisfying (4.10), hence at 4 and F. Either two hinges form or m,
is discontinuous. The second possibility is permitted in the considered case
since there is a sudden change in the shear force across r = b.

In general the zone represented by the stress régime 4F can move only as
a rigid body since the flow law gives there K,=0 hence w'=0, whereas
K,=—w"20.

At thestress discontinuity onr= b the following condition must be satisfied

b[my] — [mg] — b[s] =0, 4.50)

obtained from the equilibrium requirement under the assumption of con-

tinuity of m,. The jump in m, must be such as to pass from one side of the

interaction hexagon to another, for both parts of the plate are at yield.
Denoting by ¢ the reaction at the plate inner edge the shear force is found to be

[ <r<b,
rs = @ _ asT 4.51)
ta —pb, b<r<l.

The bending moments satisfying (4.49) are eventually found to be

r
m = (ta— Dln-, my=m, —1, a<r<b,
a

@.52)

o

1
m,:(l—;)(l—kta—-ﬁb), my=1 b<r<l.

The conditions m, (6*)=1 and m, (b7)=1 allow to evaluate the collapse
load p and the reaction ¢

1
, ta=1+—. 4.53)
b
In - In =
a a
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The discontinuity [m,]=1 is accompanied by the discoﬁtinuity in
m;, across the load application line.
The deflection rate, compatible with the stress profile is as follows:

r

In -
w=w0—z, for a<g<r<b,
In -
a
(4.54)
»b:»‘voil—l;, for b<r<l

It suffers a jump in a slope discontinuity at r=4. The result is depicted in
Fig. 4.4.

4.4.2. General solution for Tresca plates. Each of the straight lines of the
interaction hexagon (4.30) defines a distinct stress profile and results in
a different analytical solution.

Consider first the stress profile 4B, Fig. 4.3. The interaction equation and
the flow law give the following set

F=my—1=0, £,=0, K5 =v. (4.55)
From Eq.(4.15) for «=1, =1 we obtain following moment field: ’

D 1
my=1 m=1+C, + T‘ - J‘ppdp + fppz dp. = (4.56)

The radial moment depends on the actual loading distribution and on the
boundary conditions, whereas the circumferential moment is constant along
the radius.

The deflection velocity for the considered stress profile must satisfy
the requirement «,=0. Hence it follows from (4.4) that w"=0 and
therefore

w=d;r+ B, @.57)
Furthermore, the condition K,= v results in the following expression for the

flow vector multiplier:

= -4 4.58)

The deflection velocity field is therefore admissible and plastic flow can
effectively take place only if 4, < 0. Since v =>oc when r=> 0 there is a slope
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discontim(lity at =0 as only on the hinge lines the flow multiplier is
unbounded.

The results regarding stress field and displacement velocities associated
with the stress profiles on the interaction hexagon are summarized in Table
4.1. We note that the stress profiles F4 and CD can support a rigid body
motion only as v=0 is associated with such profiles.

Table 4.1
Moments and collapse modes fer circular Tresca plates
Stress .
ml
profile i bt v
D, 1 4
4B 1+C,+—— |prdr+~ |pr2dr 1 VREY: N —
r r
pr* 1 4,
BC. 1+C,— prdr-\‘—*; lnr-—i prdr+D, m+1 4,Inr+B, -
r
cD —1 AI—C3+J‘prdr const 0
D, 1 4
DE —1+C,+—=2— |prdr+~ |pr2dr —1 Agr+B, | -2
r r * 4 r
) pr* 1 A
EF ~1+C,— prdr+7 lnr-—~2 prdr+ D m,—1 Aglnr+ B =
rl
FA4 1 1-Co+ fpra’r const ]

It is seen that w’'#0 at the plate boundary » = constant. None of the
velocity fields can non-trivially satisfy both conditions w=0 and w'=0.
Therefore at a clamped edge [W]+#0 must appear and a hinge line must
develop. It is seen in Fig. 4.3 that the stress profile accompanied by plastic
motion must necessarily reach the stress point 4, C, D or Fin order to allow
a hinge line to form. The boundary conditions can therefore be written as

w=0, m, =0, hinged plate,
. 4.59)
w=20, m = +1, clamped plate.

One concludes that the stress state at a simply supported boundary maps
onto the points B and E of the interaction hexagon, Fig. 4.3, whereas

a clamped edge corresponds to the stress state represented by the points 4, C,
D, or F.

TRESCA PLATES 61

Step-wise loading of Tresca plates. To expose certain specific features of
point loaded plates we shall first consider a simply supported plate loaded
over the central part -

constant, 0 < 4.60
P=4 a (4.60)

The solution is required to satisfy the conditions
m(0) = my(0) =1, [m@] =0, [s@] =0 m() =0 @60

following from the isotropy condition and the requirement of continuity of
the radial moment and shear, respectively. The last expression represents the
stress boundary condition.

The stress profile is associated with the side AB of the interaction hexagon
of Fig. 4.3, since the requirements (4.61) can then be met. The stress field is
found from Table 4.1 to be

D rZ
1+ +2-2 0<r<a
my=1, m, = 4.62)
D
1+ C, + =2, asrs 1
¥

Since m, (0) is finite, and is at most unity, it follows that C, =0 and D, ==0.The
continuity of shear and radial moment across r=a yields C,=pa?/2,
D,=pa’/3. In order to satisfy the boundary condition m;(1)=0 the load
must be 6

302 — 2a%° “.63)

p=

The five conditions (4.61) allow to determine the integration constants and the
statically admissible collapse load intensity (4.63). The moments are

rZ

1l — 0<r<a’
5 ,
m, =1, m = 3a* —2a (4.64)
3r—2a
- <r<L
"G -2a)° r<l

With the moments (4.64) and the collapse load (4.63) it is readily checked that
0<m < lforo<r< 1.
~ The velocity field is conical as in (4.37), independently of the loaded area.
It is readily proved that v > 0 in plastically deforming zones.

Therefore the solution obtained is both statically and kinematically
admissible. The result is plotted in Fig. 4.5.
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The result (4.64) allows to get the solution for a plate subjected to a point
load at the centre. Let @ = ma® L P denote the total load acting on the plate.
The dimensionless ultimate load is found from (4.63),

6
= 4.65
1=3 ", (4.65)
If a = 0 the collapse load is obtained for a point loaded plate
g=2n, my=1 m =0. (4.66)

The result is independent of the plate dimensions.

Through an analogous procedure the solution is obtained for a clamped
plate. According to (4.59) the clamped boundary must be associated with
ahinge line. Under downward directed loading (4.60) it is reasonable to expect
m, = —1atr = 1. Hence the stress profile coincides now with the side 4B and
BC of the interaction hexagon of Fig. 4.3,

The results contained in Table 4.1 for the respective profile have to be
matched at a certain radius 7,.

The stress régime must be such as to satisfy the continuity requirements of
the radial moment, the shear force and the slope. Continuity of the slope is
required by the stress régime B.

K=

o

qM°=Prea’l?

L L i s

0 02 04 06 08 ‘a 10

Fig. 4.5. Total collapse load for step-wise loaded circular plate: (2) simply supported,
(b) clamped
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In Fig. 4.5 comparison of the collapse load for simply supported and for
clamped plates is given for the loading case (4.60). Singularity of the plate
behaviour under centrally applied concentrated load is noticed. The collapse
load in such a case for a Tresca plate is independent of the edge fixity, g = 2n.

4.5. General solution for Johansen plates

The Johansen yield condition has been found to lead to relatively simple
solutions and, at the same time, to a good approximation of the behaviour of
reinforced concrete slabs, [48], [49].

Table 4.2
Moments and collapse modes for circular Johansen plates
Stress 5
v
profile , o W
AB D 1 4
1+C,+4—j‘prdr+~ fprzdr 1 A,r+B, _Tl
r r
BCD -1 -1-C, +j‘prdr const 0
D 1 ‘ 4,
DEF — 14+C+—— prdr+‘J.pr2dr —1 A,r+B, -
r r
FA 1 1-C,+ Jprdr const 0

The general solution for this condition is given in Table4.2. Its form is the
same as in Table 4.1, provided the stress profiles BC and EF are ignored and
the ranges of variation of m, and m, are different, Fig. 4.6.

B JT’.(”

A
L4
"

D E|- L( F
3 Fig. 4.6. Interaction curve for Johansen plates
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As an example, let us analyse a uniformly loaded annular plate with
arbitrary supports at both edges. The whole plate is assumed to yield
under its ultimate load. Suitable stress profiles will be associated with
certain selected forms of the deflection rates surfaces. Let us assume two
collapse modes, Fig. 4.7a,b, with one and two ring hinge lines, respect-
ively. )

i

Fig. 4.7. Two collapse modes for Johansen annular plate

Mechanism a (Fig. 4.7a): For a < r < r, the deflected surface has
a negative hoop curvature x, < 0 hence the tip of moment vector can only
touch the side DEF of the interaction square (Fig. 4.6 and Table 4.2).

D pr? C pr
= —1, = -1+ C 2 s=3
my m, + ¢ + ; 3 s ; 5
. 4.67)
w= A,r + B,.
For r; <r< 1 the hoop curvature is positive x, > 0, thus the profile 4B is
valid,
D pr? C pr
=1, =1 L, s=
il =l G =T s =
) 4.68)
w= A r+ B,

At r=r, the hoop moment suffers jump, [m,]+#0, which, according to the
considerations of Section 3.4, is admissible. Egs.(4.67) and (4.68) must be
supplemented with the following boundary and continuity conditions:

mfa) = mi, m(r) =1, [m(r)] =0, [strp)] =0, m(l) = (’3:?6’9)
wia) =0, w() =w, [v@E)] =0 w()=0.

1t follows that only 9 conditions are present to determine 10 cons?ants
appearing in (4.67) and (4.68). Thus the mechanism a cannot be associated
with the assumed moment field. ‘

Mechanism b (Fig. 4.7b): For a < r < r,, the hoop curvature , < 0 which
corresponds to the profile DEF of the interaction curve.

Thus:
D pr? _C, pr
my = —1, m,=—l+C3+-f—?, s=2=7
4.70)
W =A,r+ B,
Forr, <7 <r, & =0, profile F4
pr* _ _C, pr
m9=1—C4+—§—, m,—l,s—-—r— 5
“.71)
w = constant.
Forr, < r <1, % > 0 profile 4B.
by _pr (G I
my =1, m,=1+C1+—;——6',S—-r 5
@.12)
w=dAr+ B,

The fbllowing boundary and compatibility conditions must be satisfied:

mr(a)=mriv mr(r1)= 1 ma(r1)= —1’ mﬁ(rz) = 1: mr(rz) = 11 n‘r(l) = nﬁ7
[S(rl)] =0, [S(rz)] =0, “4.73)
W@ =0, w(r) =Wy W) =we, w(l)=0,

where m! and m° denote the radial bending moments at the inner and the
outer edge, respectively. In this case the number of equations and unknowns
coincide. The constants can be obtained from the conditions (4.73) and are:

_ W, _ _ﬁ _ o
4= -8 == 1-7 4y = a a—r,’
@4.74)
2 pr? s _
C=C=C =GR =240 D= =5 D= -5
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o
2 T |3 %] = g
On inserting the constants into the equations (4.70 - 4.72) and rearrangement, E g € :é % :5 s 8 g
the bending moments and the deflection rates take the form: 1Rl - T EF %
Q - Bl - = —
fora<r<r, 'gb F| &= 3zl )
- N =2
p . . r—a § g E &l Ey
‘m=—1,m=—1+——(3r2r—2r3—r3),w=w— 28 ~ 2
] r 6r" 2 1 0 4 s = = ]
| 1 w1 | * -+ 8
! A W |l 9 & ‘T' T § A g a
i R CREE £
17 = = :
forn <r<y é
v gl Sl
m,,=1—§(r22-r2), m=1 w=w, v=20 @4.75) g a il
Q|
Q
forr,<rg1 B i o g
. .1 - =Y - b
my=1, m o=1+2@r—25 — ), =il E S s gz
6r 1—p 5 a E‘ g 5
E ;
4 3 3
v=-So_ M o g 5
r r(l—r,) g “5
o
The shear force is :a: g
5 T 4 . vl o8 ‘
s = E(rzz — 12) 4.76) 3 E RS R
| o : IR HEREIEE BT
k] = git+ | BiS ~ E
and the ultimate load amounts to i |y |® “la 3 g =
4 5 EE P 3 ZIF ]~
g 9 <
- = 3 5 B = - £
P @.77) i | E :
) o S T ) _
The obtained solution satisfies all the conditions necessary for the complete g ol o | & Fleldl e i g é
solution hence the mechanism b is fully acceptable. The radial yield hinges and * % “la 5 i ct B
the deflection rates depend solely on the support conditions and can be arrived 8 = = & g N
at from the following system of equations: § % ~E S|
=
i P 2 % g
a— 3 3
m,——l+a(3rza—2rl—a), S a g
-
@.78) z 3 R 3 .
p g 25 3 o o S | ]
mp= 1420 — 23 1) 5| Ed E o 2 3%
[ v o5 g )
8 @
For simply loading conditions, closed-form solutions to the rotationally B @q E‘ En
symmetric Johansen plates can be obtained. Ready formulae for the collapse ) § &
loads, internal actions and deflection rates are given in Tables 4.3 - 4.6 for § J §
i a number of particular examples. 167
il
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4.6. Beam analogy for Johansen plates

The equilibrium equation for a beam subjected to a transverse load ®p(r)
and a distributed bending moment m are as follows:

db d®,

T:" =ts4m, 7: =~ @.79)
where ®m and % are the dimensionless bending moment and shear force,
respectively. m stands for the bending moment uniformly applied to
the whole length of beam and having opposite sing to that generated
by the external load.

Comparison of the equations (4.79) and the equilibrium equations (4.5)
for plates reveals that they are identical provided rm is treated as the bending
moment %z, the hoop moment mj as the distributed moment m, rs as the shear
force %s and the load 7p(r) as the load ®p(r) of the beam.

The above analogy, [51), enables the plate to be replaced by a substitute
beam, provided the circumferential moment is constant, my; = const. This is
the case when, for instance, the stress profile coincides with the sides 4B and
DE of the Tresca yield hexagon, Fig. 4.3, or with the sides 4B and DEF of
Johansen yield square, Fig. 4.6.

To conclude, the substitute beam pattern of Fig. 4.8a applies to the
annular or circular Johansen plates supported at outer edge, whereas the
beam pattern of Fig. 4.8b is suitable for annular plates supported at inner
edge. The collapse load can in both cases be calculated with the use of the
boundary condition at the supported edge.

In a similar manner other substitute beam patterns may be adopted for
plates with different support conditions such as supported along an arbitrarily
situated ring or along both edges. The sense of an additional moment
m depends in each case on the collapse mechanism of the plate. More detailed
information on the subject can be found in [51].

To illustrate the procedure, consider an annular plate simply sup-
ported at outer edge and subjected to a load shown in Fig. 4.9a. The
substitute beam pattern is depicted in Fig. 4.9b. The bending moment for
the beam is

fora<r<b
pa(r—ap  pa(r—ay
2 6

m=m(r—a) - = rm(),  (4.80)

b<srg1

m = me—a) - PO PO gy sy

T —— — — - —

BEAM ANALOGY FOR JOHANSEN PLATES 73

Fig. 4.8. Substitute beam pattern aj

for annular plate: (a) supported at I o(r) "
outer edge, (b) supported at inner 1 pla) pi
edge
[ v
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\ 1 —
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|
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Since the bending moment at simple support must vanish, the following
collapse load is obtained:
. 1—b

- - 4.82
P="0—a@a+1)’ “-82)

7 under the assumption that m = 1.
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Fig. 4.9. Annular plate simply supported at outer edge: (a) support and load pattern of plate,
(b) substitute beam- pattern

When p = 0 the above formula applies to the annular plate supporting
a uniformly distributed load. The same result can be obtained in a different
way, Table 4.3. It is worth of note that the beam method furnishes the
generalized stress fields with no necessity to find the integration constants in
the expressions given in Table 4.2.

4.7. Huber-Mises plates
Under rotationally symmetric conditions the Huber-Mises interaction
condition is
mi—mmy+mj—1=0 (4.83)
and represents an ellipse, Fig. 4.10.
Using this relation in the equilibrium requirements (4.5) the following

nonlinear equation governing the bending moments at collapse is ob-
tained:

1 .
% = l(f (—-m, + /4= Sm%) - fppdp + C). @.84)

r

This equation, in general, must be integrated numerically. Hinge circles can
form for the stress states satisfying (4.11). It is found that m, = 2m,must hold

HUBER-MISES PLATES 75

Fig. 4.10. Huber-Mises interaction ellipse for rotationally symmetric plates

for a hinge to form. The respective stress magnitudes are m, = + 2//3,

my=t l/\/g, points B and G in Fig. 4.10. ) .
The plastic potential flow law leads to the following components of the

flow vector:
K, = v@2m, — my), x, = v(Q2my — m,). 4.85)
Contrary to the situation for the piece-wise interaction co%lditions, i'n th.e
case of the Huber-Mises interaction condition the deflection velocity is
uniquely coupled with the stress field,

W Qmg — m) — W (Q2m, — mg) = 0 (4.86)

Let us change variables so as to satisfy the interaction condition
identically,

2 n 2 n
= b -2 9 — =) .87
m, \/5 cos (0 + 6)’ my \/5 cos( 6)

At collapse thé stress profile traces an arc of the ellipSfB, Fig. 4.10.
Equations of equilibrium expressed in terms of the variable used in (4.87) take
the form
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df @ — sin0

PR _ 3
d 9= = ——fppdp, 4.88
" sin(O—E) 2 2 @89

S

Fhe interaction condition being satisfied. When the range of 0 is known
Le. the st.rcss profile is specified by the stress boundary conditions,
this equation can be integrated for 0, and the collapse load can be
evaluated.

The velocity field is governed by (4.86), which in view of (4.87) can be

written as
sin(() — g)
Wt ————— LW = 0.

. n
sm(() + E)

It can be concluded that the deflected surface is of a‘positive Gaussian
c.urvaturc within the ranges —7/6 < 0 < n/6 and 51/6 < 0 < Tn/6, a nega-
tive curvature elsewhere, except the stress states where either x, or %
vanishes. ! ’

For the stress states represented by 0 = nm+ /6 either circles of
contraflexure occur or the surface is developable. A plate deflects into a cone if

K, = 0, hence for the stress states represented in F ig. 4.10 by the points D and
J we have:

4.89)

m—+—l— m=+i 0=mm+4+ ¥
_\/5, 6 _\/3, =m +E' (4.90)

As an example consider a simply supported plate loaded by a central

.concentrated load Q, [11], [24]. For the stress field the following form of (4.88)
is obtained

1 1 4/3sin0
_1 sin +c050d0 V3

~dr > ==

r 2 @ — sind 4.91)

where ¢ is defined in (4.1). Eventually the collapse load is found to be

g = 2m “.92)

HUBER-MISES PLATES 71

This load is associated with the stress field m, = 0,m, = 1 within 0 <r<1 with
singularity at r=0. The stress state is represented by point E in Fig. 4.10,
0=m/3.

From (4.89) it follows for the stress state § =m/3 that the deflection rate is

w=w,(1 —+/r), for0<r<L (4.93)

Collapse load for a downward loaded clamped plate is associated with the
stress point G, Fig. 4.10, and its value is

@.9%)

q=:/73..

The stress field also has a singularity at r=0.

4.7.1. Numerical solutions, step-wise loading. For plates subjected to
distributed loads numerical integration of Eq. (4.84) is needed. The results of
a systematic search for the load-carrying capacity of circular and annular
plates are given in [92]. A set of bending moment fields and collapse
mechanisms for various loading and boundary conditions is given there.
Previously available results [14], [24] were checked and supplemented.

We consider plates with the interaction surface (4.83) shown in Fig. 4.10.
Equation (4.84) specifying the radial moment becomes

dm, _ lr(!(_mr + \/E3_m%> + rs), @.95)

dr 2

where

€y r

k—1 ] T
rs = ~u{2 Jp,-(p)pdp + jpk(p)pdp + X b — ﬂ%%} 4.96)
1

1
o &

in which g denotes the collapse load multiplier and up™ stands for the total
load acting on the plate in yielding, hence .

e

7= n {}: fpj(p>pdp . i;,b;}»- @9
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Cret
= 1

b
jp———t——
. c 5
'l Pi
If 2 17 1(1-,5)p’
; N Fig. 4.11.'Radial section of annular
It ) plate under step-wise loading

In Eq. (4.96) f denotes a parameter specifying the reaction at an inner support.
The notation employed is defined in Fig. 4.11 representing a radial section of
an annular plate under step-wise loading.

For statically determinate situations, § =0 or f =1, Eq. (4.95) can be
integrated for the appropriate stress boundary conditions. Otherwise, the
integration of Eq. (4.95) is accompanied by solving the equation governing the
displacement velocity.

For the Huber-Mises interaction condition Eq. (4.12) takes the form

2w + (1 ¥ —'“3"7'#7) =0 4.98)
V4 —3m?
since
1 -
my = (m, £ Ja=3m ). 4.99)

Its solution is

v = 3m, —1>d] 4.1
w Cljexp[j ( \/3_3’"' t |dp + C, (4.100)

whereas C, and C, are to be determined from the kinematical boundary
conditions. For stat1cally indeterminate situations a missing condition for
evaluating the reaction B entering Eq. (4.96) is that of changing the sign of
circumferential curvature of the deflection velocity (4.100). Requiring

K, =0 thus w =0, @.101)
one obtains r = r* such that w (r*) = w, and

d'nl‘
\/3 dr Ir=r*

m,(r*) = +

i
S

(4.102)
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hence r* is obtained from the equation
st F —= =70, 4.103)

which specifies the radius for which the stress profile changes from the
upper part of the interaction ellipse in Fig. 4.10 to the lower part
BAKJHG.

A computer program was developed to yield numerical solutions to
Eqs. (4.95) and (4.100). The flow chart and details of the program concerning
the Huber-Mises interaction condition can be found. in [85] and for an
arbitrary nonlinear interaction condition in [90].

The load-carrying capacities for several cases of loading are given in
Table 4.7. Moreover, Tables 4.8 and 4.9 contain the bending moments
obtained from (4.84) and the deflection rates resulting from (4.86) for simply
supported and clamped plates, respectively. In Fig. 4.12a characteristic
diagrams of bending moments are shown.

a)
m v T
ms |
orTn
-08 - ——2l
-04 +
L clamped

04

08 1

Fig. 4.12a. Characteristic
diagrams for Huber-Mises

circular plates — . n T \
distribution 0 02 04 06 08 r 10
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04+ clamped B

06 - simply supported 1

08 E

Fig. 4.12b. Characteristic diag-
10 L 1 . ) rams for Huber-Mises circular
o 02 04 06 08 r 10 plates — deflection rates

The deflection rates associated with the moments presented earlier are '

shown in Fig. 4.12b. It should be remarked that the deflected surface changes
its Gaussian curvature at a certain radius. As it was already stated the
contraflexure radii coriespond to the stres state represented by point D on the
interaction curve of Fig. 4.10.

The collapse loads for plates loaded at a part of their surface are given in
Table 4.10. In all the cases considered the stress profile runs over the part
CDEFG of the interaction locus in Fig. 4.10.

For plates loaded by the ring of forces bending moment distributions are
similar except that in the zone 0 € » < a a uniform flexure takes place,
Fig. 4.13a. The respective deflection rates are given in Fig. 4.13b. A broken
line shows the velocity field for a plate point-loaded at the centre.

The load-carrying capacities of annular plates are collected in Table 4.11.
As an example of bending moment distribution in plates with openings the
case of simply supported plate is presented in Fig. 4.14a where the bending
moments are plotted. The stress profile coincides then with the line CDE in
such a way as to meet the stress boundary conditions. All the points of the
respective part of the Huber-Mises ellipse are attained twice.

If a plate is furnished with a rigid central boss the stress profile
contains the point B of the interaction locus of Fig. 4.10 and runs up to
the point E or G depending upon the boundary conditions at the outer
circumference.

HUBER-MISES PLATES 81

Fig. 4.13. Huber-Mises
circular plates loaded by
ring forces: (a) moment
distribution,
(b) deflection rates

0

For annular plates, supported or clamped at the inner circumference the
corresponding stress profiles run over the part CBAKJHG of the interaction
curve in Fig. 4.10. The load-carrying capacities are given in Table 4.12. The
examples of bending moments are shown in Fig. 4.14b. Further examples of
moment fields can be found in [8], [14], [66].

To complete the presentation of annular plates we show a few results
concerning statically indeterminate cases. Annular plates supported at both
boundaries and uniformly. loaded over the entire surface have the
load-carrying capacities as given in Table 4.13.
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HUBER-MISES PLATES

83

ribution in Huber-Mises

o6 1 plates simply supported
(a) at outer edge, (b) at
— . — A .
085 02 04 06 08 - 10 inner edge

The stress profile for such structures at collapse runs over a large part of
the interaction curve (4.83) and involves both Eqgs. (4.95). The stress régime
changes at r = r*, following from Eq. (4.103) and corresponding to the stress
point B in Fig. 4.10. A dimensionless parameter § specifying the reaction is
given in Table 4.13. Some typical bending moment distributions are shown in
Fig. 4.15. More results regarding computational details as well as bending
moment diagrams are given in [85], [92].

Fig. 4.15. Moment distribution in annular plate simply supported at both boundaries

Fig. 4.14. Moment dist- i

Table 4.7
Load-carrying capacities for Huber-Mises circular plates
Load-carrying capacity
Load -
pattern Simply supported clamped
" total load u total load

m 6.517 20472 12.551 39.431

Amb; 13.074 13.691 24316 25463

M 12.848 26.907 25454 53.309

dmﬂh 9.322 14.643 17.515 27.511
) /—{ 21.189 33.283 42.687 67.053 J
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Bending moments and deflection rates for simply supported circular plates from Table 4.7 Table 4.8

Loading Bending moments and ! deflection rates _
r 0.000 | 0.050 | 0.100 | 0.150 | 0:20 | 0.25 | 0.30 | 0.35 ! 040 | 045 | 050 | 055 | 0.60 | 0.65 | 0.70 | 075 | 0.80 | 0.85 | 0.90 | .0.95 | 1.00
m, 1.000 | 0.998 | 0.992 | 0.981 | 0.967| 0.947| 0.924| 0.896 0.862| 0.823] 0.779| 0.730| 0.675| 0.613| 0.546| 0472| 0.392| 0.304| 0.210| 0.115] 0.000
[—_EU:EL my 1.000 | 1.002 | 1.008 | 1.017 | 1.030| 1.045| 1.061| 1.078 | 1.096) 1.112| 1.127| 1.139| 1.148| 1.153| 1.154| 1.148| 1.136| 1.116| 1.088| 1.052| 1.000
u=6517 Wi, | 1.000 | 0.991 | 0.978 | 0.955 0924 0.886| 0.841| 0792 ‘ 0.738 0.681| 0.621] 0.559| 0.497| 0.433] 0.370| 0.306| 0.243| 0.181| 0.119| 0.059| 0.000
m, 1.000 | 0.995 | 0.984 | 0.966 | 0.940| 0.908 | 0.869| 0.825 0.776| 0.722| 0.663| 0.602| 0.537| 0.469| 0.401| 0.331| 0.261| 0.193| 0.126| 0.061 | 0.000
A:BA g 1.000 | 1.004 | 1.015 | 1.031 | 1.051| 1.072| 1.093| 1112 | 1.129] 1.141] 1150 1.154] 1.154| 1.148| 1.138| 1.124| 1.105| 1.082| 1.057| 1.029| 1.000
p=1307% Wi, | 1.000 | 0.989 | 0.972 | 0.945 | 0.909| 0.865| 0.816| 0.762 1 0.705] 0.646| 0.586| 0.525| 0.464| 0403 | 0342| 0282| 0.224| 0.166] 0.109| 0.054| 0.000
m, 1.000 | 1.000 | 0.999 | 0.998 | 0.993| 0.987| 0.977| 0.963 | 0.944] 0.920] 0.889| 0.851| 0.805| 0.749| 0.683| 0.605| 0.515| 0.410| 0.219| 0.154| 0.000
M my 1.000 | 1.000 | 1.001 | 1.003 | 1.007] 1.013| 1.022| 1.034 ¥ 1.048| 1.064| 1.083| 1.1011 1.120| 1.136| 1.148| 1.154| 1,153} 1.140| 1.113| 1.068| 1.000
1u=12848 Wwhiv, | 1.000 | 0.993 | 0.983 | 0.965 | 0.940| 0.909 | 0.870| 0.826  ‘ 0.777] 0.722] 0.664| 0.602] 0.537] 0.471| 0404 0335| 0.267| 0.199| 0.132| 0.065] 0.000
m, 1.000 | 0.997 | 0.988 | 0.974 | 0.953| 0.926| 0.894| 0.855 ) 0.810] 0.760] 0.705| 0.645| 0.580| 0.511| 0.440| 0.366| 0.291| 0.216| 0.141| 0.069| 0.000
Aéﬂle m, 1.000 | 1.003 | 1011 | 1.025 | 1.041] 1.060| Logo| 1100 [ 1118| 1.133] 1.145| 1.152] 1155 1.152] 1.245| 1.131] 1.113| 1.090| 1.063| 1.033| 1.000
p=9322 Wi, | 1.000 | 0.990 | 0.975 0.949 | 0915] 0873 0.826] 0.773 0.717| 0.658] 0.598| 0.537| 0.475| 0.413| 0.351| 0.200| 0.230| 0.170| 0.112| 0.056| 0.000
m, 1.000 | 1.000 | 1.000 | 0.999 | 0.999| 0.997| 0.993| 0.987 1 0.977| 0963 0.944| 0.917| 0.882| 0.836| 0.776| 0.704| 0.612| 0499| 0362} 0.197| 0.000
M my 1.000 | 1.000 | 1.000 | 1.001 | 1.001| 1.003| 1.008| 1.013 1.021] 1.033| 1.048| 1.066| 1.086| 1.108 | 1.128| 1.145| 1.154| 1.151| 1.131| 1.084 | 1.000
p=21189 W/, | 1000 | 0.994 | 0.985 | 0.969 | 0.947] 0.919| 0.884]| 0.844] 0.798] 0.745| 0.689| 0.628| 0.564| 0497| 0427 0356| 0.284| 0212} 0.141| 0.070| 0.000
Bending moments and deflection rates for clamped circular plates from Table 4.7 3 Table 4.9

A
Loading Bending moments and f Jeflection rates ‘

r__ | 0000|0050 | 0.100 | 0.150 | 0.20 | 0.25 | 030 | 035 040 | 045 | 050 | 0.55 | 060 | 0.65 | 0.70 | 075 | 0.80 | 0.85 | 090 | 0.95 | 1.00
m, | 1000 | 0996 | 0.984 | 0964 | 0935 0.898| 0850 0.793 0725 0.646] 0.555| 0452] 0.336| 0.206| 0.063 |—0.095|—0.269|—0.459|—0.668|—0.898|— 1155
my 1000 | 1.004 | 1.015 | 1.033 | 1.054| 1.078) 1.102) 1123 1141| 1152 1.154] 1146 1.125] 1.087] 1.030| 0.949| 0.838 | 0.688| 0.482| 0.180 (—0.576
p=tasst Wiy | 1.000 | 0.988 | 0.970 | 0.939 | 0.899) 0.852| 0.798| 0.740 0.679] 0.616] 0.553| 0490] 0.428| 0.367| 0307| 0.250| 0.194| 0.141| 0.091| 0.044 | 0.000
m, | 1.000 | 0.992 ] 0.971 | 0.935 | 0.886| 0.824| 0.749, 0.661| 0.562| 0453] 0.334| 0.206| 0.071|—-0.071|—0.218|—0.369|—0.552|—0.678|—0.835 |- 0.993 | 1.155

m, 1.000 | 1.008 | 1.027 | 1.054 | 1.084| 1.113{ 1.136( 1.150
H=24316 Wiy 1.000 | 0.984 | 0.960 | 0.923 | 0.874| 0.819| 0.758| 0.696
m, 1.000 | 1.000 | 0.998 | 0.994 | 0.986| 0.973| 0.953| 0.925

1.155| 1.146] 1.124| 1.087| 1.036| 0.963| 0.873| 0.764| 0.631| 0.471| 0.274| 0.015|-0.576
0.632| 0.568| 0.505| 0.443] 0.383| 0.326| 0.271( 0218 0.168 | 0.121| 0.077| 0.037| 0.000
0.887] 0.838| 0.775| 0.696| 0.599| 0.482| 0.342| 0.177 {—0.016 |—0.241|—0.501 |- 0.803|—1.155

my | 1.000 | 1.000 | 1.002 | 1.006 | 1013| 1.025| 1.041| 1061 1.084] 1.107) 1.129| 1.146| 1.154] 1.150| 1.126] 1.077| 0.992| 0.857| 0.650| 0.317 |-0.576

W =25454 Wi, | 1.000 | 0.992 | 0.979 | 0.958 | 0.928| 0.890| 0.846| 0.795 ‘ 0.739] 0.678| 0.616| 0.551| 0.485| 0.419| 0.354{ 0.289| 0.227| 0.166| 0.107 | 0.052} 0.000
| m, | 1.000 | 0.994 | 0.978 | 0.950 | 0.910) 0.858| 0.794| 0.717 ¥ 0.628] 0526 0.413| 0.289] 0.154| 0.011 |—0.141|—0.300|—0.464 |—0.632|—0.803|—0.977 |- 1.155

m, | 1.000 | 1.006 | 1.021 | 1.044 | 1.071| 1.098) 1.123 1.142 i‘ 1.153| 1.153] 1.140| 1.113] 1.068| 1.005| 0922| 0.816] 0.684| 0.521| 0317 0.045|-0.576

H 17515 wiiv, | 1.000 | 0986 | 0.964 | 0.930 | 0.885) 0.832| 0.774| 0.712 0.650] 0.585| 0.522| 0459] 0.399] 0339 0283| 0228] 0.177] 0.127] 0.081| 0.039| 0.000
_m, | 1000|1000 | 1.000 | 0.999 | 0997 0.993] 0.986) 0973 0.954| 0926 0.885| 0.831] 0.757| 0.661| 0.538] 0.381| 0.186 |-0.057|—0.352|~0.714|-1.155

my 1.000 | 1.000 | 1.000 | 1.001 | 1.003| 1.007| 1.014| 1.025
H=42.687 Wi, 1.000 | 0.993 | 0.983 | 0.965 | 0.940| 0.908| 0.869 | 0.823

(841

1.041] 1.0611 1.085| 1.110| 1.134| 1.150| 1.154| 1.135| 1.080| 0.971| 0.776| 0.429 |—0.576
0.772| 0.715| 0.654| 0.590| 0.523| 0.455| 0.386| 0.317| 0.250 | 0.183| 0.119; 0.058| 0.000
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CHAPTER 5

BOUNDING TECHNIQUES

5.1. Upper bound

An upper bound to the collapse load is obtained from (3.65). The rate
of external work at collapse is not smaller than the rate of internal work
done on a considered collapse mode. In selecting admissible fields we are
guided by elastic solutions, by experimental observations or by the complete
solutions of similar loading cases dealt with under different interaction
conditions. The computational side of the problem should be kept as simple
as possible in order not to loosc the essential advantages of bounding
techniques.

) 5.1.1 Continuous deformation mode. We consider a simply supported,
circular, uniformly loaded plate. We shall seek an upper bound to the collapse
load in the case of Huber-Mises interaction condition, assuming a continuous
velocity field satisfying the conditions

w(0) = wy, w(0) =0 (.1)
in the polar coordinate system. A velocity field
W=, (I — r?) (5.2)

satisfies the kinematical requirements (5.1) and is twice continuously differen-
tiable so that no hinge appears. Once the velocity field is assumed both the
internal and external rates of work can be computed. Expressing (3.69) in
terms of polar coordinates one obtains

o 1
1,02 1 AR 1 12
W= W =W rdr 23 \rar
r r
2y 2

W= % - = = 0 =
A \/3 | n \/3 n 8.(5.3)
j wrdr j (1 —r2)rdr
0 0

It is worthwhile to remark that for the considered collapse mode (5.2) the

UPPER BOUND 91

curvatures are w” = W'/r = —2i, . Therefore the associated stress state on the
interaction condition is represented by the point C: m, = my = 1 on the yield
curve of Fig. 4.10.

Evidently this moment field does not satisfy the stress boundary condition
m, (1)=0, and thercfore it is not statically admissible. The collapse load
multiplier g, = 8 obtained in (5.3) is larger than the respective one
corresponding to the exact solution g, = 6.517, Table 4.7.

Since a choice of the collapse mode is arbitrary, except that the kinematical
admissibility conditions must be satisfied, we take the velocity field

W= wo(1—7). (5.4)

Hence w"= 0, w/r = —/r and Eq. (5.3) gives in this case a better

upper bound
1

Jdr
12

= —= = 6.928. (5.5

2 0
3 —7;7—‘ \/g
J(l—r)rdr

The associated stress field is found from the plastic potential flow law. For
the collapse mode (5.4) &, = —W"= 0, x, = —W/r = W,/r and therefore the
corresponding stress state is represented on the interaction ellipse of Fig. 4.10
by the point D: m, = 1/\/’?;, my = 2/\/5 and the stress boundary conditions
cannot be met.

The computational procedure is similar for any other interaction surface,
except that the internal dissipation is expressed by a different formula.

Let us assume that the collapse velocity field (5.2) applies to a Tresca
plate. Eq. (3.70) represents then the rate of internal work. The kinemat-
ically admissible load multiplier can be calculated directly from (3.66) and
becomes

1 1
j (mx, + mygig) rdr 4err
=2 =0 = 8 (5.6)

\[v’vo A =r¥)rdr J(l»rz) rdr
0 o

since k, = Ky = 2w, and therefore the corresponding stress régime is
m,=mg=1 throughout the plate, the same as in the case of a Huber-Mises
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plate. The strain rate vector falls within the fan admitted by the general-
ized plastic potential flow law for the point A of the interdction hexagon
of Fig. 4.3.

Consequently we apply the collapse mechanism (5.4) to a Tresca plate.
Since #, = 0 and &, = W,/r the kinematically admissible load multiplier can
be calculated from (3.67) with (3.70) and becomes

1
(.. . L
3 [l bl e s

j(l—r)rdr

The corresponding moment field represented on the interaction polygon of
Fig. 4.3 by the line 4B,
m,=1-—r my=1, (5.8)
satisfies the stress boundary conditions: m, (0) = 1, m, (1) = 0 and the
equilibrium equations (4.5). Then the load multiplier (5.7) corresponds to the
exact solution for Tresca plate,
f = 6. (59)

W =

5.1.2. Collapse mode with discontinuities. An application of the limit
analysis theorems to the collapse load evaluation when the exact solution is
not known will be made for a rectangular plate.

The plate is uniformly loaded and simply supported on the periphery. The
supports allow the corners to lift under downward pressure p = u. A plate
quarter is shown in Fig. 5.1.

We consider a kinematically admissible velocity field generated by planes
rotating about certain lines and intersecting along hinge lines, i.e. the lines of
sudden change of slope.

No energy is dissipated outside the hinges since #;; = 0 in flat zones. The
yield line pattern, specified to within a single parameter &, is shown in
Fig. 5.1a. The best upper bound will be obtained requiring that du/dé = 0.
Dimensionless deflection velocities in the respective zones I, 2 and 3 in.the
figure are

. . . : x+y\ . )

Wy = Wy (1—x), w, = W, <l - m), Wy = Wy (1—y). (5.10)
The velocity field is referred to the coordinate system marked in Fig. 5.1. The
kinematical boundary conditions

=6. 6.7

UPPER BOUND 93
a) ) 14 L e _1
U

I I | S
Il
P=const |
|
|

T
|
L 3 2 |
|

1 e
I .
1
|
K RIl
@t P L X
A=gl
b)
W,
aW
) d)(/
w

Fig. 5.1. Simply supported and uniformly loaded rectangular plate: (a) yield line pattern,
(b) deflection rate

w=0for(@-1)<x<éy=1,
(5.11)
w=0for0<y<é,x=1,

are satisfied by (5.10). The corner zone UST lifts. up as it is not restrained
against upward movement.
Across the line separating the zone 1 and 2 the following discontinuities in

slope occur
ow Wo ow Wpé
— =7 — =+ 5.12
[ax] 14¢ [ay] 1+¢ G.12)

The total rotations about the hinge lines and the lengths of respective
hinges are .

148 )
Dor = Doy = W, 771:-645’ DPox = Wy, (5.13)
lor = log = A/1+&, lpg = a—1. (5.14)
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5.2. Lower bound

In order to find a lower bound on the collapse load a stress field has to be
found in equilibrium with the external loads and such that the interaction
condition is not violated.

We consider a Huber-Mises plate of the preceding section. The stress
boundary conditions are

m1) =0, s0)=0=m©0) =0. (5.21)

As suggested by the elastic solution the stress field is assumed in the form
m, = pmp = pe(1—r?), my = pmd = pa(1—Pr?).  (5.22)

It satisfies the requirements (5.21), [56]. Equilibrium equations (4.5), when
putting u=p, result in the following relation between the multipliers « and §:
203 - 8) =1 (5.23)

for the entire range of 0 < r < 1. The stress field (5.22), now specified to
within a single multiplier, must be substituted into the interaction condition.
" The most stressed section has then to be found and the requirement that the
stress vector for this region stays within the interaction surface furnishes
a lower bound multiplier.
The condition (3.75) becomes in the case of the Huber-Mises interaction
surface

1
" max /(m?)* —m? m+ (mf)?
1 ! ~
tmax /1—r2(14+8)+r*(1—B+5%

Hs

(5.24)

The denominator attains its maximum value at r = 1 and r = 0 for f= 0.
Hence from (5.23)

p=-=6 (5.25)

Rl

and the associated statically admissible stress field is
m=1—-r*, my=1. (5.26)

The corresponding stress profile is therefore that of the solution for a Tresca
plate and lies within the Huber-Mises ellipse, touching it in the stress points
corresponding to the plate centre and the plate boundary. This is marked by
the straight line 4B in Fig. 5.3.

m
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The collapse load for a Huber-Mises plate is therefore contained within
the limits given by (5.5) and (5.25)

6< < % 6 = 6.928. (5.27)

The correct value corresponding to the complete solution is g, = 6.517, Table
4.7. To bound the collapse load for a rectangular plate of Fig. 5.1 from below
we select the following stress field referred to the X,Y — coordinate system
with the origin at the plate centre, point K,

xZ

mx=]—.‘;i, my=1—-yz, mxy=ny. (528)

The stress field (5.28) satisfies the stress boundary conditions
me(ay) =0, my(xl)=0. (5.29)

To be statically admissible the stress field (5.28) must satisfy the

equilibrium equation (3.13). For 4= p = constant it is necessary that
1 pu

= - - 5.30

C=1+ Z7 3 (5.30)

In order to find a statically admissible load multiplier u, the stress field

(5.28) under the condition (5.29) has to be substituted into a chosen

interaction condition. For the Huber-Mises condition (3.18) we obtain the

following inequality )

m% + memy, + m? + 3mi, =
(5.31)

x?  x* 1 w\? 1
= —_ 2 4 2 1,2 —_ —— < .
1 a2+a4 y+y+xy(3<l+a2 2) ) 1

The equality sign is valid for x = y = 0 and at the corner S (a,1), providing
that in the latter case the expression in the square bracket vanishes. This
requirement leads to the best lower bound possible within the considered class
of stress field (5.28). The result

1 1
e=2{1 + = + — 5.32
H ( p aﬁ) (532

is plotted in Fig. 5.2, curve b.

The assumed distribution of moments (5.28) produces yielding at isolated
points only, namely at the plate centre K and at the corners S, Fig. 5.1. The
computed load-carrying capacity obviously underestimates the real one.



http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

98 BOUNDING TECHNIQUES

A better estimate can be obtained using power series expressions for the
moments.
Several solutions regarding lower bounds can be found in [81], [93].

5.3. Bounding through inscribed and circumscribed interaction loci

Another bounding procedure employs exact solutions for the interaction
surfaces inscribing and circumscribing the actual interaction surfaces, as
specified in (2.61).

Since the Tresca hexagon lies inside the Huber-Mises ellipse the exact
solution for the Tresca plate represents a lower bound to the collapse load for
a Huber-Mises plate. Similarly, the exact solution for the maximum reduced
stress interaction condition which circumscribes the Huber-Mises curve gives
an upper bound for a Huber-Mises plate, Fig. 5.3.

Consider for example a simply supported circular plate under uniform
pressure. According to (5.8) and (4.27) the collapse load associated with any
interaction condition between the Tresca interaction condition and that of
maximum reduced stress is necessarily contained within the bounds

6 < p, < 6.852. (5.33)

The collapse load for a Huber-Mises plate falls well into the range in the
case of simply supported plate, solid lines 4B in Fig. 5.3.

The stress profiles for exact solutions of a clamped plate indicate the solid
lines ABC in Fig. 5.3.

5.4. Remarks on mathematical programming techniques

For plates of arbitrary shape the analytical solutions can be obtained only
for a few special cases of loading and support conditions. That is why the
numerical methods remain to be an effective tool for solving problems of limit
analysis for plates.

The correspondence between the static and kinematic theorems of limit
analysis and the duality theorems of the mathematical programming provides
useful methods to obtain numerical solutions of the limit analysis, [4], [5].
Depending on linearity or nonlinearity of an interaction condition, either
linear or nonlinear mathematical programming is to be used.

The first attempt at posing a limite analysis plate problem in mathematical
programming form was made in [37)]. in which the finite difference method of
discretization of the plate was used. This procedure was extended in {4].
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Recently the finite difference method of discretization has been used to a lesser
extent.

The most common method today is the finite element method. An
important advantage of that method is not only its flexibility with regard to
the boundary conditions but a possibility to obtain truly admissible stress or
displacement rate fields as well.

Mathematical programming with the use of the FEM of discretization to
obtain upper and lower bounds of limit analysis of plates was first employed
by Hodge and Belytschko, [21], [22].

Since that time many authors have been applying mathematical program-
ming to the limit analysis of structures discretized by finite elements. Some of
these works were related to plates in bending.

Strictly speaking, a problem of limit analysis formulated for a plate of
arbitrary shape and loading is always a nonlinear programming problem. The
reason is the nonlinearity of the yield condition with respect to the bending
and twisting moments (recall that even the Tresca condition becomes linear in
terms of principal moments).

However, the majority of numerical results was obtained by means of the
linear programming approach, [1], [2], [6], [10], [46]. Adopting a piecewise
linear approximation of the yield surface one obtains a mathematic.al
programming problem that has many constraints and unknowns but still
remains linear. Since computer packages exist that solve very large linear
programming problems, the ultimate loads of plates can be efficiently found in
that way.

On the other hand, the efficiency of existing nonlinear programming
solvers diminishes rapidly with increasing dimension of the problem. This is
probably why the pioneering work of Hodge and Belytschko has not found
many followers, [5], [7], [60].
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CHAPTER 6

NONHOMOGENEOUS AND ORTHOTROPIC PLATES

6.1. Nonhomogeneous plates

In nonhomogeneous plates the ultimate moment varies with the coor-
dinates of the middle surface. The variation results either from the variable
thickness of a plate or from variation of the material yield point, non-uniform
reinforcement etc.

For a rotationally symmetric plastic nonhomogeneity the interaction
condition takes the form

Alm,mg) — my(r) = 0. S (6.1)

The interaction locus varies in size, stepwise or continuously. The
equilibrium equations (4.5) and the flow law (4.7) remain unchanged.

As an example let us consider a circular, simply supported and uniformly

loaded plate made of a Tresca material composed of two concentric annuli of
different mechanical properties, Fig. 6.1.

Fig. 6.1. Circular plate composed of two concentric parts with different ultimate moments

The jump in mechanical properties may be caused by a jump in plate
thickness or by a change of material properties. Depending on the values of
nonhomogeneity and division parameters there exist two solutions for a plate
with a stronger central part and four solutions for a plate with a weak internal
part, as it was obtained in [35].

Analyse a plate with a stronger central part, so that the Tresca condition is

I, 0<r<o,
7 = sup(imy|, |ml, Im,—mg) = { b 1" (6.2

=
H, lh <r< 1.

and 7 < 1 as shown in Fig. 6.2. The boundary and continuity
requirements are
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m1) =0, [m@)]=0, m@O) =m0, 63
w(O) = w,, w()=0.

Two solutions are possible, corresponding to to_tal or partial yielding,
depending on the degree  of plastic nonhomogeneity.

In the first case of the total yielding we assume that the stress profile
corresponds to sides 4'B’ and 4B in Fig. 6.2a, solid lines.

a) My b) Mo
B ret _Ar=0 g r=0 A
T n>n, 1 _; A
n=>n, S L A :
B A A Zires
e /s
s ,
¢/ ¢ g F__Jr
N/ N mr n m
o E
I3} £

Fig. 6.2. Stress profiles for nonhomogeneous simply supported c'ircu_lar plate with a stronger
central part: (a) total yielding, (b) partial yielding

There is an admissible jump in m, at r,, namely [m, (r)] = 1 —7. I'n'tegrating
the equilibrium equations (4.5) and taking into account the conditions (6.3)
we obtain

R 0<r<n, (64)
m) = =+ 5= + n+2-n),n <r <1 '
r

and the limit load is found to be
p=60+nr0-m. 6.5)

Since %, = 0 is satisfied throughout the stress profile the deflected
surface is a cone
w=w(l-r) (6.6)
as for a homogeneous plate. ) ) )
The solution ‘applies if m, < n within the zone 5, < r < 1.. S_mcc m, is
a monotonically decreasing function of r, therefore (6.4) is valid if
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—

3
1-r

1+72—#3

1 2 ) = 6.7

The other case is such that the central part remains rigid and
a hinge forms at r = 5 for the radial moment m,(p) = 7. It is
found that in this case

6
p= **"”75,
1—73

(6.8)

r3
m, =n+ ”‘3‘(*0—'2>, my=1n, RpR<r<l, 6.9)
1—-r3\ r

1, 0

S 7 < op,
U P
PEWT < g1 (6.10)
1—r

The stress field has to be extended in to the rigid zone in order to ensure
statical admissibility of the solution. For instance, the solution can take the
form, for fixed #,

n
Mo Q=@ (o), m=T, 0<r <y 61D
(]

0
An extension is indicated in Fig. 6.2b with the solid line 4" 4"”. The ranges
of validity of (6.5) and (6.8) are shown in Fig. 6.3. For various positions of the
thickness variation two considered cases of total and partial collapse are
discerned.

08

n case ]

(723

02} case 2
g

Fig. 6.3. The ranges of validity of the
solutions for nonhomogeneous circular
plate with a stronger ceniral part
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If the central part is weaker there are four solutions. Complete analysis is
given in [35] and the set of them is represented in Fig. 6.4. As can be seen for
the cases 2, 3 and 4 the stress profile involves the stress régimes BC and B'C’
therefore the outer ring can serve as clamping.

|,
>

AN
o

r=g me

Fig. 6.4. The ranges of validity of the solutions for a nonhomogeneous circular plate with
a weaker central part

The solution of the circular plate made of a Johansen material as
an example of continuous change of the interaction surface (6.1) was
obtained in [94].

6.2. Orthotropic plates

Two types of anisotropy of materials can be distinguished: an innate
anisotropy caused, for instance, by plastic working of metallic materials
and a structural anisotropy generated by a reinforcement of an isotropy
matrix with bars or fibres embedded in specific directions. The material
constants for such materials depend upon the direction in the physical
space. Suitable yield conditions have to allow for this property. To de-
scribe anisotropic bodies, the Huber-Mises yield condition, [17], [54] is
usually generalized or its linearization is used in form similar to that of
the Tresca yield condition. '



http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

104 NONHOMOGENEOUS AND ORTHOTROPIC PLATES

In what follows some examples of rotationally symmetric orthotropic
plates will be presented. In such plates two mutually perpendicuar directions
of anisotropy can be distinguished that coincide with the principal directions
of the bending moments M,, M, and their ultimate values M?, M3.

The negative and the positive ultimate moments are assumed to have the
samemoduli, which means the yield surface remains symmetric with respect to
the origin of the coordinate axes.

The system of basic equations, except the yield condition, is the same as the
system for isotropic plates. Thus the equilibrium equations (4.5), the

kinematical relationships (4.4), the associated flow law (4.7) and the.

compatibility conditions (4.9) remain unchanged.

6.2.1. Orthotropic plates with nonlinear yield conditions. The Huber-Mises
yield condition for rotationally symmetric plates can be generalized as
follows:

F = A,m} + 24, mmy + Aym? — 1. (6.12)

The coefﬁcxents 4,, Ay, A are constants which depend on the plastic
properties of the orthotropic material. To make the yield curve rcpresented by
(6.12) closed and convex, two inequalities must be satisfied,

4,4y — A% >0 and A4, + 4, >0 (6.13)

which means that 4, and 4, have to be positive. For isotropic plates we have
A,=A4,=1, 4, = —1/2.

Let us analyse a yield condition (6.12), in which 4, = 1, 4, = % and 4,,
= — b, then

F =m} —2bmmy+ ¢mf — 1 =0 for c¢>b. (6.14)

This form of eq. (6.12) describes a certain family of curves in a more
convenient manner, Fig. 6.5. Parameter ¢ appears to be a reciprocal of the
orthotropy coefficient,

1
4=-=2% (6.15)

Nonlinearity of the yield condition leads, similarly as in the case of
isotropic plates, to the necessity of employing numerical methods of solution,
at least for arbitrary loading conditions.

Analytically solved specific plates are few; two examples are shown below,
after [70].

Consider a circular simply supported plate subjected to a central
concentrated force. The method of solution is similar to that used for an
isotropic plate in [24].
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Fig. 6.5. Generalization of Huber-Mises ellipse to the orthotropic case

The collapse load

- ¥

g = (6.16)

is associated with the bending moment state represented by the point E of the
yield curve, Fig. 6.5, at which

m =0, my=- for O0<r<1. 6.17)
¢
At r = 0 a singularity occurs. The deflection rate field (4.12), on account of
(6.17), is described by

w" + —b; w =0. (6.18)
¢
After integration, the deflection rate function takes the form

, ,
b= 1 (1 —TE). (6.19)
b= o )

In order to satisfy the edge condition w (0) = w,, the parameters b and ¢ must
be such that ¢2 > b. This inequality is, for ¢ < 1, stronger than ¢ > b which
ensures that the the yield surface (6.14) is closed and convex.

The Gaussian curvature of the deflection rate surface is, remembering
6.17),
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.. 0F 0F
Ky K = vza—m'-m= — 4v2h. (6.20)

For b > 0 the Gaussian curvature is negative, as was the case for an isotropic
plate, and has at the its centre a singularity of the type %'(0) = cc.
Another example of an analytical solution is furnished by a circular simply
supported plate subjected to applied bending moments m around the
circumference.
Integration of the equilibrium equation in the presence of the boundary
conditions

m,(0) = my(0). and m, (1) =m (6.21)
leads to the following distribution of moments
! (6.22)

m, = my = —F=————— =

V1-2b+c?
which corresponds to the point C on the yield surface, Fig. 6.5. Integration of
(4.12) results, in turn, in the deflection rate function of the form

1—2b+¢*
W= W, <1 —r @b ) (6.23)

Since 1—2b + ¢2 > 0, the inequality ¢ — b > 0 must be also satisfied. The
Gaussian curvature is found to be

% i = 40 — b2 — bym?. (6.24)

From the above expression it follows that two cases of an orthotropic plate
can take place: first, when b < 1 the Gaussian curvature is positive and no
singularity at the centre occurs since W' (0) = 0 and, second, when b > 1 when
the curvature is negative and the singularity at the centre does occur since
W (0) = oc. )

The two examples discussed above show that the orthotropy affects the
whole behaviour of the plates considered. Before we proceed to other
numerical examples, let us analyse the stress profile that can develop in
a simply supported plate under uniformly distributed load. Due to the
boundary conditions

m,(0) = my(0) and m,(1) =0 (6.25)
the bending moments at the centre are

1

/1-2b4c?

m, (0) = my(0) = (6.26)
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and are represented by the point B in Fig. 6.6. The moment profile runs
over the portion BC of the yield curve which, for orthotropy, is no longer
symmetrical with respect to the diagonal m, = my, Two cases can take
place.

m, a) mg 2, b)
%, rer
K %,
r=1 %
M e
== )"
r=0 3, ] I3 B r=0
r=1
A B8 *r
—IC By
& <
A A
7 m, 1 max m, m,

Fig. 6.6. Two variants of collapse for circular simply supported orthotropic plate obeying
nonlinear interaction curve

The first one, shown in Fig. 6.6a, does not differ qualitatively from that for °
isotropic plate. The other, Fig. 6.6b, occurs when m, > 0 in the central part of
the plate. There exists the point K at which the moment m, attains maximum,
max m, = c//c?—b? and i, = 0; this means that a ring hinge can develop at
acircle r =, # 0.

From the flow law it follows that the sings of the curvatures are:
kg < 0for0 < r < yand ky > 0 for y < r < 1. At the centre, symmetry
requires that either the deflected surface is smooth, w'(0) = 0, or a plastic
hinge can develop. For the part BC a hinge can form at » = 7, 0 and
therefore for the part BK associated with 0 < r < r, the curvature ¥, = 0.
To simultaneously satisfy the flow law, this part of the plate can only move
as a rigid body, v = 0.

The conclusion is that it is orthotropy of the plate that is the reason for
arigid central portion of the plate to form at certain values of the parameters
b and c. Such a specific behaviour is not observed for the isotropic
Huber-Mises plates.



http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

. _
108 NONHOMOGENEOUS AND ORTHOTROPIC PLATES ORTHOTROPIC PLATES 109
In general, the numerical methods of solution are the same in the case of 0 02 04 06 08 - 1
the orthotropit and isotropic rotationally symmetric plates, [90]. However, M,
N - ! . ) ~F=15 (c=0667)
particular solutions differ appreciably. { 02 M
Let us illustrate these differences with the help of a circular simply : 7
supported plate by assuming a number of sets of parameters 6 and oér //
¢. The diagrams of the hoop and radial bending moments are shown o6k w7
in Figs. 6.7, 6.8, 6.9. The distributions for isotropic plates are drawn i 0832 b=0 LA
in dashed lines. 08 b _ -
e
10 — ~ L e
1029 = b5~
122+
0 02 04 06 08 r_10
= & L 8 m,
Mot te=n 7 ler
bometletes - 2 15
g 161
04t . // m
L b:O\ W .
0745 05~ - Fig. 6.8. Distribution of moments in circular simply supported orthotropic plate for parameters
08l - ¢ = 0.667 and b = 0 and 0.25
— - Mg
= —
TR0, ¢y my A=
12} -
I 0 02 0. 06 08 r 10
VEE :
16 = - 7,
& ol w0867 (c=15) //
F " me v
2 “1 oss5 b=0 )i
' osf m 7
L N . - g 0667
08 =D/5/C‘/
2t —— QY 8
10 el _ Al0
I & ~— S L
0 . 122y
£,
281 3 ()
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m | 312 ’ ] 16 |,1690
m
Fig. 6.7. Distribution of moments in circular simply supported orthotropic plate for parameters Fig. 6.9. Distribution of moments in circular simply supported orthotropic plate for parameters

c¢=1and b = 0.1 and 0.95 b c=1land b = 0and 145
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0 05 0 15 b 20

Fig. 6.10. Collapse load for uniformly loaded circular simply supported orthotropic plate

The influence of orthotropy on the ultimate load is depicted in
Fig. 6.10. A star corresponds to the isotropic case. Increase in the
circumferential ultimate bending moment is seen to remarkably enhance
the collapse load.

. 6.2.2. Orthotropic plates with piece-wise linear yield conditions. Two types
of linearization of the yield condition are usually employed for orthotropic
plates: a nonsymmetric one [42], [67], Fig. 6.11a and a symmetric one [68],
Fig. 6.11b with respect to the diagonal m, = m,.

Respective equations and curvature rate components of the deflected
middle surface for both types of linearization are given in Tables 6.1 and 6.2.

The solutions for orthotropic plates are found to differ from those for
isotropic ones not only quantitatively but also qualitatively. This will be
demonstrated on an example of simply supported circular plate under
uniform pressure p.

The generalized stress field and the deflection rate surface have to satisfy
the following boundary conditions:

m,(0) = mp(0), m;(1) =0, 6.27
Ww(0) = w,, w()=0. (6.28)
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Fig. 6.11. Stress profile for orthotropic simply supported circular plate obeying: (a) asymmetrical,
(b) symmetrical piece-wise interaction curve

Let us employ the yield surface shown in Fig. 6.11a and consider two
specific cases: f#> y and f < y. For the former the boundry conditions (6.27)
indicate that it is K4 B that is a statically admissible stress profile. It is worth
noting that at K4 the curvature rate components are k, = 0, , # 0 which
means that the central part of the plate can only move as a rigid body. For the
point 4 a sudden change in the hoop component %, occurs: as a result a ring

hinge is formed at » = r,. This radius can be calculated from

m() =y and m@y) =0 (6.29)

which follow from the continuity requirement [m, (r,)] = 0and the equation (4.9).

Integrating the equilibrium equation (4.5) and the deflection rate equation
(4.12) or making use of the general solutions (4.15) and (4.19) in the presence
of the boundary conditions (6.27) and (6.28), the following moment
distributions are arrived at:

for0 < r <y )
m, =9,

2
my =y + 3;, (6.30)
W= W,
forry,<r<1 p
= B — Lo, |
my, = f, (6.31)

w—w(l"’
= Vol 7 )
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the ultimate load is

_ 2=y
p= . (6.32)
in which r, is a relevant root of the equation
32 — (B—y) (1+217) = 0. (633)

The radius r, as a function of f§ is shown in Fig. 6.12. The parameter y is taken
as unity, in other words the reference ultimate moment is M2

B
e 50 s " ogess 15 10
i
08
\ Y=1
06
- \
02
0 02 oc | 06 T
3

Fig.6.12. Hinge circle radius r, against the ratio of orthotropy

For the other specific case, f < 7, the stress profile is represented by the
dashed line 4B, Fig. 6.11a, similarly as for an isotropic plate. Also similar is
the deflection rate surface and the internal actions field:

m, = B(1-r?),

my = B,

W= wo(1-7r), ©634)
p=6p.

The moment distributions, the ultimate load and the deflection rates for
various orthotropy coefficients § (when y = 1) are shown diagrammatically in
Figs. 6.13, 6.14, 6.15, respectively.
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0 0v2 0'6 [.7i6 0'8 r 10
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Fig. 6.13. Moment distribution in simply supported orthotropic circular plate obeying interaction
curve shown in Fig. 6.11a

p
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B
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= ‘ i B G5

Fig. 6.14. Collapse load for uniformly loaded simply supported orthotropic plate obeying
interaction curve shown in Fig. 6.11a
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0 05 0 05 r 1
=1
w =3
W 3
2
15
osh 1
10 0635 Q50 0448 0335 0

Fig. 6.15. Deflection rates for simply supported orthotropic circular plate obeying interaction
curve shown in Fig. 6.11a :

A considerable number of solutions for plates with various boundary
conditions and load patterns are given in [42].

The yield surface shown in Fig. 6.11b lead to somewhat simpler solutions.
The boundary conditions (6.27) restrict the stress profile to the line AB,
Table 6.2. .

Making use, as before, of the solutions (4.15) and (4.17) and remembering
the boundary conditions (6.27) and (6.28), the following moment distribution
and the deflection rate surface is obtained:

m, = a(l—r?),

(6.35)
my = oc(l-—(l— E)rz),
o
B
W= wﬂ<1—ri>, (6.36)
associated with the ultimate load
p=2Qx+ p). 6.37)

Its magnitude does not depend upon the ultimate radial bending moment
(m?=7y). The radial bending moment has the same distribution as for the
isotropic plate. The hoop moment, which was kept constant in the isotropic
Tresca plate, does have depend on r. Both bending moment diagrams for
various rations f/x are shown in Fig. 6.16.
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04 a6 08 r 10
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Fig. 6.16. Moment distribution in simply supported orthotropic circular plate obeying interaction
curve shown in Fig. 6.11a

Return to the deflection rate function (6.36). From the analysis of its
derivative ' B s
W= =g ra! (6.38)
it follows that, depending on f/x, this function can have either negative or
positive Gaussian curvature. Moreover, for 8/ > 1 the deflection rate surface
remains smooth at the centre. This simply means that no plastic hinge form
there, contrary to the case of the isotropic Tresca plate.
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/
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Fig. 6.17. Deflection rates for simply supported orthotropic circular plate obeying interaction
cutve shown in Fig. 6.11a-
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Modifiod Tresca i ) Table 6.1 For fje < 1 a singularity w'(0) = oc does exist. As readily seen in
i’ S . B . . .
for (:;:::Z;f:fc:f;v © 1:::5 flow law Fig. 6.17, the deflected surface of the orthotropic plate obeying the yield curve
P of Fig. 6.11b is completely different from that found for the isotropic plate.
N For the sake of comparison, the deflected surface for the orthotropic plate
gyl A ) obeying the yield curve of Fig. 6.11a is given with dashed line. The above
c - solution ‘is valid for all the ratios f/o provided the yield surface remains
¥ Y m stress profile s, 3, convex.
D HE
AB C my=p , O<m<y 0:1
8c m5=)5¢-yém,, .y<m,<0.-€:l
cD ~B<mg<0 m,=-y -1:0
‘DE mg=-p ,~a<m, <0 0:-1
EF ma:-yém,»ﬁ, O<m<y e:-l
Fa O<my<p, me=y | 1.0
Table 6.2

Symmetricinteraction curve and flow law for orthotropic circular plate

stress profile ;'g,;;‘gs
AB me_-(l—g)m,'p , O<m<a [B-a:a
BC ma=$m,¢ﬁ ,omy<m<0 | By
co mﬁﬁyﬂ\,-ﬁ. yem<-a |-a-f-a)
DE m‘,:{i-g)m,-ﬁ , a<m<0 |p-a)-a
EF mﬁ%’”,-ﬁ , O<m<y | Pi-y
FA mg:EE—L—ym"—ya':-i a:y-a
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CHAPTER 7

YIELD LINE THEORY

7.1. Assumptions

The yield line method for the evaluation of the collapse load for plates
foreshadowed the development of consistent theories of plastic plates and
shells. Due to an ingenious simplification of the fissuration pattern of
reinforced concrete slabs and profiting from the principle of virtual work the
yield line theory became amethod of rapid estimation of collapse load of plates
under complicated boundary conditions and loading patterns, [30], [32], [39].

Regarded from the viewpoint of the present theory of plastic structures
the yield line method provides for upper bounds on the collapse loads.

The collapse mechanism is assumed to consist of flat portions, finite or
infinitesimal, joined by plastic hinge lines.

These hinges, or yield lines can be considered as narrow bonds of the plate
in which strains are dramatically larger than those in the neighbouring
regions. The generalized strain rates (the curvature rates) concentrated along
the yield lines are understood as the following limits:

dn
] = lim j.icijdn. 7.1
(]

On the other hand, in view of Chapter 3.4, a yield line constitutes a line of
discontinuity in the curvature rate along which a jump in the normal
derivative is admissible, (3.59),

dw .
[%] =&, =i, # 0. (12)

This means that a concentrated curvature rate &, at the yield line is equal to
the vector of mutual rotation of two adjacent undeformed, plane portions of
the plate. The remaining components of the concentrated curvature rate are:

Ko = [%] =0 and # =10 (1.3
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which results from the continuity of the deflection rate surface [w] = 0. From
the fact that &, vanishes it follows that each yield line is a trajectory of the
principal curvature rate. Vanishing of both curvature rate components, ¥,
i,, means that the yield condition at the yield line is a projection of the
respective yield conditions on the axis m, (Chapter 2.3). Assuming in Figs.
3.2, 3.3, and 34 that m, = m, m, = m, m,, = m,, the bending moment
normal to the yield line attains, for the Tresca and the Johansen yield
conditions, the values

m, = + m, (74)

whereas, for the Huber-Mises yield condition, it amounts to
2

Vel

and M° is the reference ultimate bending moment.

My = + (1.5)

where m, = + M;
The power of dissipation in the yield line theory is concentrated in all the
yield line and can be calculated from the formula

D=ML ; my; Ppil;, (7.6)

where L is a reference length and /; is a nondimensional length of

—t Jds dy
S
T

Fig. 7.1. Moments along the yield line: (a) orthotropic reinforcement, (b) ultimate moment along
the yield line and its components in the direction of reinforcement

_the i-th yield line.

a)

1T

For orthotropic plates we assume, after [30], that the ultimate bending
moment along the yield line can be expressed by means of two ultimate
moments in the directions of orthotropy, Fig. 7.1,
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m, = My, = My, sin®f+ m,, cos?f, 1.7
my = — my, = —(mg sin®f + my, cos?f). - (71.8)

where (m,,, m,,) and (mj,, m,,) are dimensionless sagging and hogging
ultimate bending moments par unit length in the directions x and y, m,, and
my, are the dimensionless ultimate moments along the positive (for sagging)
and the negative (for hogging) yield line, respectively.

The relationships (7.7), (7.8) are equivalent to the assumption that the
bending capacity is exhausted when the maximum bending moment surface
(7.9), (7.10) is reached. This conclusion is due to [48] and [62]. In [48] it was
assumed that the yield line coincides with the trajectory of the principal
curvature and that the maximum bending moment yield condition is relevant
and relations (7.7) and (7.8) were obtained. In [62] it was started from (7.7)
and (7.8) and it was obtained the following equations as a result:

(my — my)(m, — m,,) — m2, = 0, 1.9
(my + my)imy + myy) ~— mZ, = 0. (7.10)

Assumptions of the yield line theory can be set up- as follows:

— plastic deformations in a plate concentrate in the yield lines,

— the yield lines, constituting a yield pattern,. divide the plate into
a collection of plane, rigid elements,

- the yield pattern corresponds to a kinematically admissible mechanism
of instantaneous motion. The yield pattern does not change with the
motion, thus the classical yield line theory describes an incipient plastic
motion only and cannot account for the changes in geometry without
appropriate modification,

— the bending moment across the yield line attains the ultimate value m,,
which depends on the amount of reinforcement and the properties of
the matrix in which the reinforcing bars are embedded.

Under such assumptions the collapse load multiplier is computed with the

use of the principle of virtual work,

dy Hpn Wdxdy = Y my Byl (7.11)

where the right-hand side summation is performed over all the yield lines of
respective lengths /. In general, the yield line pattern of the collapse mode is
specified to within a number of parameters 7, j = 1, 2 , 1. The best bound
on the collapse load will be obtained when :

# = min uy (7). (7.12)
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7.2. Discrete yield line pattern

A collapse mechanism of a plate consisting of a finite number of plane
portions separated by yield lines is termed a discrete yield line pattern. Such
collapse modes can be conveniently described with the help of vectors
corresponding to rotations of particular rigid portions. Such a rotation vector
coincides with the axis of rotation of the portion under consideration and is
equal to

> b = W (7.13)

where W is a deflection rate of a generic point of the rigid element and -

_h denotes its distance from the rotation axis.

As a result of ignoring the in-plane deflection rate components
and requiring continuity of the deflection rates, the yield line pattern
and the associated rotation vectors have to satisfy the following con-
ditions:

a) the rotation vectors lie in the rotation axes,

b) the rotation vectors remain in the middle plane of plate,

c) the rotation vectors of rigid regions neighbouring the supports coincide

with these supported edges,

d) the vectors of mutual rotation of adjacent portions are the differences
of the rotations of particular portions involved and coincide with the
separating yield line,

e) a yield line runs through the point of intersection of the rotation axes of
adjacent portions.

Satisfaction of the above conditions amounts to saying that the
hodograph of the rotation vectors (the rotation rate diagram) must be closed,
Fig. 7.2. Before using the expressions (7.11) and (7.12), the moduli of
rotation vectors (within an accuracy of one of them taken as a virtual
quantity) are adopted as parameters of the assumed collapse mode. When
the support conditions do not determine the yield line pattern in a unique
manner (point supports etc.), some additional parameters must be employed
describing the directions of rotation axes. Then the hodograph is constructed
to determine the kinematically admissible collapse mechanism. Some
collapse modes together with the corresponding rotation rate diagrams are
shown in Fig. 7.2.

A yield line 04 shown in Fig. 7.2d will be used as an example to give
a number of useful formulae for the calculations of the power dissipated in
the yield line. A relative rotation of the adjacent rigid parts 1 and 2 is

D, = b= @, cose; — (—P, cosa,) = P cosa, + P,cosn,. (7.14)



http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

122 YIELD LINE THEORY

Fig. 7.2. Yield line patterns and rotation rate diagrams for four examples of plates
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According to the condition d), the rotations of parts 1 and 2 are related to
each other by the equality

@, sino, = P,sina, (7.15)
and are equal to:
W, w W, W
D, =0 =0 =-0=_"9° 7.16
Y by lppsinag’ 27 h,  lppsina, (1.16)

where W, denotes the deflection rate of the point O. Making use of (7.14) and
(7.16) the power of dissipation in the yield line OA4 can be eventually
calculated from the formula

I
dog = my Dy, los = m, W, ﬁ (cotar, + cota,). (7.17)

-

x s
\

- Fig. 7.3. Rotation vector of two adjacent plane portions about the yield line and its components

For a plate with the orthotropy directions x and y, Fig. 7.3, it appears
convenient to use the relevant components

DL = P, — D, = P,sinf,
Dl = &y, — P, = D, cosf, (7.18)
lx

Icosf, [, = Isinf.
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The power of dissipation in the yield line 12 with the length / and with the
ultimate bending moment components shown in (7.9) is given by

dy, = (M, sin?f + my,, cos?B)D,,1. l (7.19)
Finally, remembering (7.18) and (7.19), the power of dissipation in an
_arbitrary yield line 7 amounts to
dyj = (Mo, DL, + m,, BYL)  for &> 0,
- - (7.20)
dij = —(mex L, + my, &jl) for &; <0
for sagging and hogging, respectively.

When all the rigid portions are surrounded by the positive yield lines the
overall dissipation is a sum of the expressions for each part.

Fig. 7.4. Rotation vector of the i-th plane portion about the supported edge and its components

In the case of portion adjacent to a simply supported edge, Fig. 7.4, the
power of dissipation is equal to

d; = m,, Pla, + m,, dla,, ~(1.21)

where &} = W,/h,, P} = Wo/h, are the projections of the rotation vector
®; and the remaining notation is shown in Fig, 7.4. When the considered
portion of the plate is clamped, the expression (7.21) must be supplemented
by a term corresponding to the hogging action at the support, and eventually
becomes

dl' = (max + m:)x) dﬁ)‘;ay + (muy + m;y) (p; Ay . . (722)

Consider, as an example, a hinged rectangular plate under uniformly
distributed pressure. Let the plate be orthotropic in the sense of Fig. 7.1. Due

|
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to the double symmetry of support and loading conditions an admissible yietd
pattern is specified in the considered case to within a single parameter #.
Requiring the flat portions 1, 2, 3, 4 to rotate with respect to the supports,
the yield line pattern, shown in heavy lines in Fig. 7.5, is obtained. The
corresponding diagram of rotations is also given in the figure. The vectors @,

' @,, @, D, represent plastic rotations with respect to the supports. Similarly,

the relative rotations of the parts 1,..4 are represented by the respective
vectors @, etc.

a) b)

y 4
R S e e = Al
i P=const 1‘
1 1¢z .
| 0] : " % 9, 9 !:V_Z
| ® 1
I K L ! g o & !
|@ t 3

A | N i X

= | 7
i ® I % [
) | 24
we N\ ] 2 i

L

Fig. 7.5. Simply supported and uniformly loaded rectangular plate: (a) yield line pattern,
(b) rotation rate diagram
The following dimensionless quantities will be employed:

PL? M, M,, . W,
Wy =p =30 'may=-M—oy=1, max="M—0=/1a Wn=f(7-23)

whereas L is the reference length, M, the reference ultimate moment and
W, denotes the vertical displacement rate on KL. Rotations with respect to
the supports and the respective lengths of the supports are:
W .
(bz=§b4= ,%=""7“Q, ay=l;:
(7.24)
b, =P,= Pl =2 " g =1.

According to (7.21) the total rate of internal work for the whole plate is in the
dimensionless form
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Dy (B 2
ﬁ = 2(m,; DB + m,, BY) = 2, (5 A+ B)' (7.25)
The rate of external work is

Dl'ﬂl
M°L

= uvg ﬂ(3 2m) W - (7.26)

The balance equation (7.9) yields the collapse load multiplier in terms of
a single parameter 7 specifying the yield pattern,

12 2ﬂ + p* 4
=p= 7.2
=P = e, (7.27)
The lowest multiplier is obtained by imposing the requirement duy/dy = 0.
Eventually the following value of the collapse load is obtained from the yield
line theory

64 1, 3
= - 1 :
u= ,72, 7 2/}A< 1+ +m) (7.28)
for 24 < 1. Otherwise the yield pattern changes so that the line KL is
parallel to the Y-axis in Fig. 7.5.

In Table 7.1 the resulting formulae for the collapse load of recta.ngular
plates with various fixity conditions are collected. Most of the notation is
explained in the inserted figures and

My Mo,

M,
ox 4 A= 22, i=xy. (1.29
M,,’ UMy T M, P=xy. 029)

M° =M, 4=

In the above notation primes refer to the yield moments in negative bending.
In Table 7.2 the numerical values are given for several values of the parameter
</ combining the plate aspect ratio, orthotropy and layered structure, [86].
Mixed boundary conditions can easily be accounted for in the yield line
theory. .

We consider a square plate, clamped on two side and supported in the
corner as shown in Fig. 7.6. The plate is isotropic but endowed with different
ultimate moments M® for positive and A'M° for negative flexure so that
dimensionless ultimate moments are

my= A'm,, my =1 (730)

and therefore 4’ defines the degree of fixity. Under the point load Q = gM°
applied in the centre, the simplest yield pattern is shown in Fig. 7.6. Flat
elements 1, 2, 3 of the plate at failure rotate about the supports and about an
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2L

Fig. 7.6. Square plate with mixed boundary conditions: (a) yield line pattern,
(b) rotation rate diagram

axis passing through the point support. Due to symmetry, and at
the prescribed deflection rate w, of the point of load application
the rotations are

B, = B,= Wy, Dy= L, Ly = lpe = 2. (7.31)
V2
The vectors of rotation coinciding with the positive and negative yield lines
are, respectively,

P, = ®,c0845° + P,c0845° = ﬁ Wo, L, = ﬁ,

(7.32)
Dy = D= P cosa, + Pycosm, = W, \/g, Ly =L = @_,
where cosx, = 3/\/16, cosx, = 2/\/ 5. The relation (7.9) leads to
o = Pilyy + 2Pyl + 2B Ipc A’ (7.33)
and the collapse load is
qg= 4(4 + A) (7.34)

As another example of plates with mixed boundary conditions we
consider a corner plate under uniformly distributed pressure. Particular edges
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are clamped, hinged and free as shown in Fig. 7.7. The following dimension-
less quantities will be employed:

PL? M, M,
f=p="0, My =M, A="22% A'=22 (135
At =P = oy M, M, (7.35)
B _ A
- f o)
K P=const
1
I @
| ~
I =
| |
L 2 ®
@ y
I (]
|
L |
cnt | x Fig. 7.7. Yield line pattern in uniformly loaded
L | corner plate with mixed boundary conditions

The rotations of the flat parts with respect to the support are

Wo
, Py=—, 7.36
e e = (1.3

and the projections of the vector &, and the length of the yield line 12 on the
axes x, y are, on account of (7.18)

=@, [ =17,
PP =@, L*=n1, (1.37)
e T

D, =

I

i
i

According to (7.20) the internal energy rate is

Din
MOIZ = APL 12 4+ D212 + A, PP P = AP, (1) +
+ (1+4,) P, (7.38)
and the external energy rate
Doy 1.
S = gy (7.39)

From (7.9) the collapse load follows,
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6

= — (A =n)? + n* + A;n). 7.40
By ﬂ(l_”)( A=m? +7 1) (740
The best upper bound is found from the condition duy/dy = 0 and the
respective value of the governing parameter is

va___ , (1.41)

T+ i

Thus the lowest upper bound within the considered class of collapse modes is

u =6+ 2/A(+4)). (1.42)

The examples presented make it clear that the yield patterns depend on the -
aspect ratio and on the orthotropy.

Fig. 7.8. Yield line pattern in polygonal simply
supported plate under point load

Let us now consider an isotropic plate in the shape of a regular n-sided
polygon loaded at the centre. An admissible discrete yield pattern is shown in
Fig. 7.8. A straight-forward computation using (7.9) and (7.17) provides the
collapse load associated with the considered mode of deformation

¢ = 2ntan g (7.43)

Two observations can be made in connection with this example when n=> oc.
First, the collapse load is then ¢ = 2n. Even more interesting is the conclusion
that as n increases the hinge lines approach each other to form eventually
a continuous field when the plate boundary is curvilinear, [30], [41], [72].

The problem of continuous modes of deformation and curvilinear hinges
will now be studied.

—
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Table 7.1

Collapse loads for rectangular plates with various boundary conditions, orthotropy

and layered structures

R B
4"=3f2€, E= (=14 J143[2), L= 1+A+/1+4], i=x,y, =
1, PB* X, JT+4 X, J14A"
1 A=pJ4 = —=p) gy —— 2oy
Ay M, 4 2 4 Ay
& > A, X, +X,
B< =
A, A, A/ 4
Y J1+4]
X, R S 2
B A [EA I B }_’
—
A PB’ Vi+4 Y, Ji+47
U =S4 2 1 4 1 NI Ta N TS
A o i, B A,
AIY % ﬂ? J‘y §=Y1+Y2
Ao/4 B
A, AL @
X J1+4a7
N 4 A
A, >
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A o
V14, PB* Y J1+47
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2y M, B3,
£ A, X
> p<———— E="—
A, VAQ+4) B
Ay
X A
= <B< ’ - (O=Rn=]
for SPS———,—=min (5,
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B A, B 1,
v
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Parameters «#, ¢, and 2

Table 7.2

3 6
tet{11 \/Hﬁ), P
o2, 3-2¢

e ¢
0.00 0.00
0.01 0.017
0.02 0.034
0.03 0.051
0.04 0.068
0.05 0.084
0.06 0.100
0.07 0.116
0.08 0.132
0.09 0.148
0.10 0.163
0.11 0.179
012 0.194
0.13 0.209
0.14 0.224
015 0.238
0.16 0.253
0.17. 0.267
0.18 0.281
0.19 0.295
0.20 0.309
0.21 0.322
022 0.336
0.23 0.349
024 0362
025 0375
0.26 0.388
0.27 0.400
0.28 0413
0.29 0425
030 0437
031 0449
032 0461
0.33 0473
034 0485
035 0496
0.36 0.507
037 0518
0.38 0.529
039 0.540
040 0.551
0.41 0.562
042 0.572
043 0.582
0.44 0.593
045 0.603
046 0.613
047 |. 0.623
0.48 0.632
049 | 0642
0.50 0.651

2.000

2,023
2.047
2,070
2.095
2119
2143
2.168
2.193
2219
2245
2271
2.297
232
2351
2378
2,405
2433
2461
2.490
2518
2.547
2.577
2.606
2,636
2.667
2697
2728
2,760
2791
2.823
2.855
2.888
2.921
2,954
2.988
3.022
3.056
3.091
3.126
3.161
3.197
3.233
3.270
3.307
3.444
3.381
3419
3.457
3496
3535

o : P o £ 7
05t | o661 | 3575 | 076 0860 | 4.687
0.52 0.670 3.614 0.77 0.867 4.737
053 | 0679 | 3655 | 078 0873 | 4787
0.5 | 0688 | 3695 | 079 0880 | 4.837
055 | 0697 | 3737 | 080 0886 | 4888
056 | 0706 | 3777 | 081 0893 | 4840
057 | o714 | 3819 | o082 0899 | 4992
0.58 0.723 3.861 0.83 0.905 5.044
0.59 0.731 3.904 0.84 0911 5.097
0.60 0.740 3.946 0.85 0917 5.150
0.61 0.748 3.990 0.86 0923 5.204
0.62 0.756 4.033 0.87 0.929 5.258
0.63 0.764 4.077 0.88 0935 5.312
064 | 0772 | 4122 | 089 0941 | 5367
065 | 078 | 4167 | 09 0947 | 5422
066 | 0778 | 4212 | 091 0952 | 5478
067 | 0795 | 4258 | 092 0958 | 5.3
068 | 0803 | 4304 | 093 0963 | 5591
065 | 0810 | 435 | 09 0969 | 5.648
0.70 0.818 4.397 0.95 0.974 5.706
071 | 0825 | 444 | 096 0979 | 5764
072 | o832 | 4d2 | o7 0985 | 5882
073 | 0839 | 4540 | 098 099 | 5881
0.74 0.846 4.589 0.99 0.995 5.940
0.75 0.853 . 4.637 1.00 1.00 6.00

6 100

P 3

5 075

£
4 b 050
P

3 025

2

0 02 04 06 ag#iL
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7.3. Yield line field

A cont.inuous field of straight yield lines is generated when the plate
boundary is smoothly curved. Such a field can also occur in the case of partial

collapse when a plastically deforming region extends only on a portjon of the -

plate. Fields of yield lines form fans developed either from a point or from an
envelope. Since the normal moment on a hinge line takes the value of ultimate
moment, the circumferential moment stays constant in a yield line for
isotropic plates. We recognize therefore the situation specific for the
maximum principal moment condition at parabolic stress régimes which will
be studied in Chapter 8.

Fig. 7.9. Yield line fan developed from
an envelope

The main problem connected with fans consists in the computation of the
rate of internal work for such a collapse mode. Let us consider a fan
developed from an envelope as shown in Fig. 7.9. Equation of the deflected
surface passing through the plate boundary 7, = (0) is

v = W (0 _
W= W, (0) (l ’6(0)>’ (7.44)
where 1, (0) denotes the deflection rate on the envelope line

Wo0) = C,exp [v f rﬁdoJ (7.45)
0

=]
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whereas C,, is an arbitrary constant, [28]. Dimensionless curvature rates are
expressed as follows:

K, =fky =0,

(7.46)

Ky =

1 (1 + (”o'+ﬂ)(22'b'+ﬂ) _ r5’+p’>wo(0),
'y T )
where prime denotes differentiation with respect to 6.

In view of (7.46) the rate of internal work, due to the fact that the
considered yield lines are straight, consists solely of contributions due to the
ultimate moment on the curvature rate %, . For an isotropic plate with the
ultimate moment M° the rate of work in an infinitesimal plate segment is

ro

ﬁdDim = my ([ke rdr)dﬂ =

1]
- m0<1 IURIC T ’“j”)w.,(o)de. (1.47)
0

2
To

The rate of work on the envelope where a ridge of the deflected surface can
form if the envelope belongs to the plate, is not considered at the moment.
When p = 0 and i, is constant we obtain from (7.47) the known expression
for the rate of internal work of a polar fan

1 e
(12 (BY -\ . 7.48
sz = (142 (5 = £)i, a 049

Hence for a point loaded plate simply supported along a convex boundary
% (0), the yield line theory furnishes the collapse load

2n
q= J(l +2 <’£)Z - ’_ﬂ) . (71.49)
YA
0

Whenever integration prescribed in (7.49) is performed on closed smooth
boundary the expression specifying the collapse load is simplified to become

oo o

This can easily be verified remarking that
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: " 12 l )
‘ B~k _ d(i) (1.51)

5

which, if integrated, vanishes for a closed smooth contour. When the
integration is not carried out over a closed curve the expression (7.51)
represents the work in the two limiting positive yield lines corresponding to
=20 and 0 =9,.

Thus the total work of a polar fan with limiting positive yield lines consists
of (7.48) and (7.51)

62
: D _ B\
o 0 -
; :

Yy

This question will reappear when complete solutions are studied.

Fig. 7.10. Collapse mode for simply
supported circular plate under
eccentrically applied point load

As an example we consider a circular plate loaded by an eccentrically
applied concentrated force as shown in Fig. 7.10. In the polar coordinate
system with the origin at the point of loading the boundary is given by

% = acosl + /1-a?sin?6 . (7.53)
The collapse load is obtained from (5.50) to become

2
e (71.54)
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It can be pointed out that no restriction is imposed on the angle which the
yield line forms with the normal to the contour. The collapse load (7.54)
increases infinitely with increasing a to 1. This being unreasonable it is
expected that another local mechanism will form, possibly with negative
hinge lines so as to give finite value of the collapse load. The energy is then
dissipated along such a negative hinge.

Fig. 7.11. Yield line fan bounded by
a negative yield line 7, = , (0)

In order to derive the expression for the rate of work on a curved negative
yield line, which necessarily must appear in clamped plates, we consider the
situation shown in Fig. 7.11. The yield line fan is bounded by a curve
% = 1y(0). Let the plate be isotropic both in negative and positive flexure, with
the ultimate moments mg and m,, respectively. For an infinitesimal segment
the rate of work done by the negative ultimate moment is

1 Wy 1d0 o \?
— dD, = m' ®dl = m! 2 =t (1 2) Vao (7.55
oL P = mo "0} cosp mowo( * (r,,)) (7-53)

i W, ’
since P = Tﬂ t = eosf, tan’f = (ry/r,)*

The contributions (7.48) and (7.55) result in the following expression for
the rate of energy dissipated in a polar fan of yield lines

L0ID =m, 1+2§2—r~6’fvdﬂ+m' l+i°,1v'vd0 (7.56)
MDL int — 0 ’i) ’6 0 (] 'b 0 M -
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The load carried by the fan shown in Fig. 7.11 is
62
/N\a .,
q= J(l + A+ (2447 (ﬁ) _ @)de, (7.57)
L) L}
8,

x

where A'= mg/m, and m, = 1. When the integration is performed over
a closed contour r, (6) the collapse load becomes

1

¢ =(1+4) f(l + (;‘;)Z)de. (7.58)

The equation of the negative hinge 7,(0) appearing in (7.55) remains yet
unspecified. It is neither obvious nor reasonable to expect that identifying
1(0) with the plate clamped boundary the lowest collapse load will be
obtained. Hence a variational problem arises: to find 7,(f) such that the
functional (7.57) takes the minimum value,

al

qg= jrp @, x, 1, ry) = min. (7.59)
1

1

The Euler equation yields

2(1 !
2D iy = 0 (7.60)
[

and its solution is a logarithmic spiral
n = Aexp[C0). (7.61)

Expressing the integration constant C in terms of the angle f, Fig. 7.11, the
negative hinge line is obtained in the form

r, = A exp [0 tanf]. (7.62)
The value of the collapse load (7.57) with (7.62) becomes

g =(1+4)1 + tan?8) (@, — 0,). (7.63)

For a clamped point loaded plate the negative yield line should form
a closed curve. Such a curve is necessarily a circle, Fig. 7.12. No requirement
is imposed as to the magnitude of its radius but is usually argued that the
circle should touch the clamped boundary. The collapse load for such a point
loaded plate isotropic both in positive and negative flexure, is

q =4mn. (7.64)
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Fig. 7.12. Collapse mode of a point loaded
clamped plate

Fig. 7.13. Polar yield line fan
bounded by a negative yield line
and contained within
two simply supported edges

Let us consider a not infrequent case of a polar fan bounded by a negative
yield line as specified in (7.61) and contained within two simply supported
edges, Fig. 7.13. The collapse load according to (7.52) and (7.63) consists of
the following contributions

GL

g= j <1+(£°')2) do + (1+A)(1+tan’B)0,—0,) +

+ j <1+<:2')2) da. (7.65)
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Theexpression (7.65) reaches its minimum for the following relations between
the angles £, y,, w,, p and the coefficient of negative bending 4, Fig. 7.13,[39]

—— cos?f = sin?f, cotany, + cotany, = 24’cotang ,

144
174
C =t = —_ .
anp 1+4 (tanZ(o 1)

Although the question of continuous fans and the associated rate of work
seems to be somewhat simpler when complete solutions are considered in the
next chapter let us for completeness return to an arbitrary fan patterns,
Fig. 7.9, in order to compute the rate of energy dissipated in an infinitesimal
strip bounded by two arbitrary curved hinges r, and r,, Fig. 7.14.

(7.66)

Fig. 7.14. Infinitesimal strip
bounded by two arbitrarily
curved hinges
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The rotations on the yield lines r, and r, are
&, = Peos(B—f), i=1,2, (71.67)

where & is the rotation with respect to the boundary line. The rotation & was
obtained from the continuity condition of rotation on the line separating two
adjacent infinitesimal portions,

Wo(6)

D = 7.68
ey (7.68)

where W, (0) is given in (7.45). The rate of internal work (7.55) at the hinge r;is

1 . rydf
-M-D—LdDim = my Pidl; = my; P, cosh,
- m, (; + M”—J'ﬂ) Wo(0) 0. (7.69)
o T

Eventually, from (7.47) and (7.69) one arrives at a formula for the total
dissipation in the region ABCD, Fig. 7.14,

L p = {mu rzr—rl (1 L ®+ACrt+p) ré’+p') +
0

M°L 2 T
(1.70)
+omg (1 + (ro+ﬂ)(r1+{7) — g2 4 @+ p)rz2+p) Wy (0) b,
I 3 ) 7

where m,,, m,, equal either m, or —mg, depending upon the sign of the total
curvature at the respective hinge:

The most important case is that of 7, = #. Then my, = —mg when the
zone considered is adjacent to a rigid region or to a hinged support if mg= 0.
Equation (7.70) can be rearranged to yield

1 _ I+ p\?
= fosn (14 EY)

R N ()

We can see that for r, = 0, p = 0 and consequently w, = C, we obtain the
equation (7.56). If the curvature of the envelope p = 0, but 7, # 0, Eq. (7.71)
after integration gives

@.71)

.
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]

91
Dim ” 76' 2 ¥y nle=e.
—_ 1 o — _ i) .
WL Cy( +A)J(1 + ('b) )d(? Co[(l 7o) % oo, (7.72)
gl

It is interesting to observe that dissipation is not influenced by the
equations of the internal yield lines but only by the coordinates of
their origins and ends, [28]. :

As an example ‘we consider a circular simply supported plate loaded by
two equal point loads applied with an eccentricity on the plate diameter,
Fig. 7.15a, [93].

Fig. 7.15. Deflected surface for simply supported circular plate loaded by two equal point
loads: (a) consisting of conical elements, (b) consisting of conical and cylindrical elements

We assume that the deflected surface consists of conical elements. The
zones SO, S are cones with vertices at the points of load application whereas
the zone SO,0,S corresponds to a cone with the vertex K on the plate
boundary. The expressions (7.47) and (7.72) furnish the rate of internal work
in the zones SO,S and S0, 0, S, respectively.

Hence for a two point loaded plate, Fig. 7.15a, the collapse load is

(sean 1 2]

(1.73)
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A special case of a continuous field of yield lines is when the envelope
degenerates into an infinitely distant point. Straight yield lines become
parallel and the plate segment undergoes cylindrical bending, Fig. 7.16.
As obtained in [28] the formula for dissipation in an infinitesimal strip
takes the form

1 ” -
ML dDyy = my (2, — 2 )(—2g) + my; (1 + zgz1)—
— my, (1 + zyz;)) Cds, (7.74)

where ()’ = d/ds’ C denotes a constant rotation of the generatrices and the z,,
z,, z, are shown in Fig. 7.16. In the case of z, = z, , myy, = m; = 1 and

my, = —A’ we obtain, similarly to (7.72),
sz
D _ cigay|a + 2yds — €| 2o — 2| . @79
UL [ 02 o P .
S‘
z
2, —
ﬁ \W=D
// % W, =C(2,~2,)
] /W,:C(z,,—z,)
L 1
Fig. 7.16. Pattern with parallel /
yield lines
S

If the considered region does not meet an undeformed zone the deflection
w; at the line /; must be prescribed, whereas the boundary line z = z, is
unknown and fictitious, namely

Zo = 2 + % (1.76)

As an example we consider the plate subjected to two point loads as in the

previous example. The deflected surface now consists of straight yield lines

corresponding to cylindrical bending. Thus we assume the collapse mode

shown in Fig. 7.15b. Two cones are joined by the cylindrical surface. Using
(7.75) and (7.76) for A’ = 0 we obtain the collapse load
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29 = 2;(1! + In
\/l—a2

More examples using an arbitrary field line can be found in [28].

a—1

atl ) . 1.7

7.4. Partial collapse modes

A partial collapse mode is associated with the appearance of a negative
yield line. Such lines can touch a simply supported boundary if an angle that
a straight positive yield line makes with the contour attains a critical value. To
illustrate the point we shall consider the case of a plate strip loaded in the
vicinity of its simply supported boundary. The geometry of a simply
supported edge appears to have no influence on the angle the negative yield
line makes with the boundary curve.

2

—-

A Fig. 7.17. Partial collapse of plate under
point load in the vicinity of simply
supported edge

\
|
|
|
|
[
|
|
!
|
|

Ve
The considered plate is equipped with the positive ultimate moment
m, = 1 and the negative one my= A'. The yield pattern under the
concentrated force Q = gM? is shown in Fig. 7.17. Since the plate is isotropic
and there is an axis of symmetry both in positive and negative bending, the
circumferential hinge in negative bending is a circle. From (7.11) the
dimensionless collapse load is found to be

q = 2tanf + 2(1+4") (n—p). (7.78)

The lowest value is obtained when

PARTIAL COLLAPSE MODES 143
tanf = /4. (7.79)

For A'= 1 the positive yield line makes therefore an angle = m/4 with
a hinged boundary and so does the negative one.

We note that f= w/4 corresponds to the passage from parabolic to
hyperbolic stress régimes in the general theory of bending of plates with the

maximum principal moment yield condition discussed in the next Chapter.
The collapse load is

g =2(/4 + (1+4) (n — arctany/4). (7.80)
For a curvilinear boundary tanf = z;/r,, hence the limiting condition (7.79)
becomes
7\ 2
(’i’) = A (7.81)
L)

arctan//A’

Fig. 7.18. Partial collapse of circular
simply supported plate

We can now check the range of validity of the solution (7.54) concerning
the circular plate shown in Fig. 7.18. Eq.(7.81) gives the following relation
between the position of loading and the critical angle 8,

. 1 | A
sm()o = E m (7.82)

The smallest eccentricity a at which the partial collapse occurs is

that associated with max(sinf,), hence for a = l—f - Eq. (7.54)
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[ A [ A
i i La< [/ ——<ax
applies therefore in the range 0 < a T For Ta Ses 1 the

collapse pattern is shown in Fig. 7.18.

The collapse load consists of the contributions furnished by two con-
tinuous fields and by the hinge where the deflected surface has a ridge. The
collapse load using (7.52) and (7.53) is

6,

q= 2{(1+A’) (m—0,) + IIL} =
0

—a?sin20

= 2(1+4) (n—6,) + \/% arctan (4/1—a? tan 6,), (7.83)

—a?

where 0, is defined in (7.82).

~— Fig. 7.19. Simply supported
rectangular plate under point load

Let us finally consider a rectangular plate shown in Fig. 7.19 subjected to
a concentrated force Q at an arbitrary position. Depending upon the position
of the load different collapse mechanisms of partial or total collapse will lead
to the best estimate of the load carrying capacity. The plate is isotropic but
has different ultimate moments in positive and in negative flexure M° and
My = A'M°, respectively.

As many as five different collapse mechanisms may appear, Table 7.3. The
problem was systematically studied in [33], [61], and [88].

A set of level curves of the collapse load is shown in Fig. 7.20 for a square
plate of equal ultimate moments in positive and negative bending. Fig. 7.21
shows the level curves of constant load-carrying capacity g = Q/M® for the
plate aspect ratio § = B/L = 1.5. A large number of such diagrams can be
found in [88].

Table 1.3
Collapse modes for simply supported rectangular plate under point load at arbitrary position
| B M X Y 0
B=gi A=s E=p5 M= AT
Mechanism I
Y
(| S 1]
| I
! | e
! ! N =Hee-0 na-n
| !
T 4
e X J
[ - EE—
Mechanism IT

I 7 N ) 1 &«

g=—+ +———(2tang+(1 +tan’p) (r—2¢))
¢ n(i—n) tan’e

&l

1—ctang - 1 (11 1)
=———— ¢=cotany; c= [— -
v oY ; ;l n yenm c=cotany P
Vi I
. % for @ <arctan\/x'
N 8 -l
1 A
g=Fk+—+———(tang+(1 +tangp) (1.52—29))
k tan?g,
et e, 12X

1—ctan Y
1 A
e= [— —1); c=cotany
14 4'\tan’g

for p<arctany/ A’

Mechanism IV

g=23J A+ (1 +4) (n—arctany/ 4)
for <p==a:ctan\/;

Z\/Z' (2tang+(1 +tan?g) (t—2¢)

q_mn1¢
—cta 1 A"

,’=1 ‘ n(p; c= ( —1); c=cotany
2647 —20) 1+ A'\tan%g

for p<arctan\/ A’ -
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Fig. 7.21. Level curves of a constant load carrying-capacily for rectangular simply supported
plate under point load

CHAPTER 8

COMPLETE SOLUTIONS

8.1. Equations of plastic flexure for the maximum principal moment
interaction surface

The discussion of properties of plate equations in Chapter 3 has
shown that for certain interaction surfaces the governing equations are
either parabolic or hyperbolic. This fact allows to develop a method
of generating complete solutions for a broader class of plates than ro-
tationally symmetric ones.

Such a circumstance occurs in the case of the maximum principal moment
interaction surface (3.21). In terms of the invariants (3.24) the interaction
condition takes the form

F=ytotl=0 8.1)

and in the plane of principal moments defines a square shown in Fig. 8.1. For
the stress régimes corresponding to the sides of square (8.1) the representation
(3.25) leads to :

p@=+w+l ¢ =+1. 8.2
13
W Wesw-1=0
p'=-1
my=m,
[ A
-1 1 w
m,=m,
Fig. 8.1. Maximum principal
moment interaction curve Y-w+1=0
in the plane of the moment o g'=1
invariants
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For definiteness we consider the side 4D of the interaction square in Fig. 8.1.
1t follows from (3.36) that the deflected surface is then developable since

w.xx w‘yy - (w,xy)z = 0. (3.3)

characteristics

Fig. 8.2. Principal bending mom:ent_and curvature rate trajectories in the plate obeying maximum
principal moment interaction curve

Finding a deflection velocity field at collapse consists therefore in deriving
a developable surface passing through the plate boundary. The generatrix of

the surface is a straight line marked in Fig. 8.2 as isti i
. 8. a charact
50 s e raight fncn g racteristic. The velocity

w=Ad@0)r + B®) (8.4)
and the curvature rates in the system of coordinates r, 0 are
Ko=% =0, k,=0. (8.5)

Since the condition (8.1) is linear in the variable , thus it follows from
(3.47) that the system. of equations (3.29) and (3.37) is parabolic, except for
the corners of the interaction square where simultaneously two yield

equations are fulfilled and such a situation requi iti i
ille equires an additional analysis.
The characteristic direction is T

W
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d
Y _ tand (8.6)
dx

and the quadruple characteristic for the stress equations is a straight line. This
can be seen directly from Egs.(3.37) as one of them reduces under the
condition of yielding (8.2) to the form

0, cosd + 0 ,sinf = 0 8.7

and therefore df = 0. Hence the characteristic is a straight line. The
characteristic coincides with the trajectory of m, = m,, Fig. 8.2.

Choosing the net of trajectories as the system of orthogonal coordinates
the following expressions are obtained for the variation of bending moments
and shear forces along the characteristics

D(6 1
my=1 m =1+ C#) + ¥ + ;jppz dp — J.ppdp (8.8)

55 =0, rs; =0C0) — jppdp, (®.9)

where ¥ = R/L stands for the dimensionless radius of curvature of the first
trajectory, Fig. 8.2. The functions C(0) and D(0) are to be determined from
the conditions available on the boundary, on the envelope of straight
characteristics or elsewhere. )

The load-carrying capacity of a parabolic régime is furnished by
integrating the shear force along the curved trajectory. Different analytical
solutions can be matched along the straight trajectories.

To complete the analysis of field equations associated with the interaction
surface (8.1) it is necessary to study the singular stress régimes, namely the
corner points 4 and C corresponding to vertices of the interaction cones
(3.21) as well as the states B and D related to intersections of the cones.

For the statesm;, = 1,m, = —1itis w = y, = —1, (point D in Fig. 8.1),
and the field equations reduce to the set (3.49) and (3.53). The equations are
hyperbolic and the characteristics coincide with the trajectories of principal
moments, as given in (3.51).

The principal moments, shear forces and curvature rates are then

m o= —my; =1, s1=£, s2=—£, (8.10)
Ty r
. Ry =V, RKp=—V, K, =0, v,>0, v,;>0. (811

Finally consider the states represcnted by y, = 0; then the corner points
A4 and C of the interaction square of Fig. 8.1 are associated with the stress
states
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mo=my=my=my=1 my;=0, s,=5=0, (812

independently of the orientation of trajectories. Such a stress zone is further
referred to as isotropic. The curvature rates are

Ky = v, k;=v,, (8.13)

being atbitrary but nonnegative.

8.2. Matching the stress régimes

Tomatch different analytical solutions on straight characteristics it is first
necessary to'establish admissible jumps across such lines. Across a straight
trajectory 2, Fig. 8.2, the bending moment /, must be continuous but 1, and
s, do not have to since they are balanced on each side of the discontinuityline,
similarly as o, in Fig. 2.4.

Consider situations when the external loading is continuous across
a characteristic, [p] = 0. The magnitude of a jump depends on the stress

-régimes matched on the discontinuity line. Accordingly, the jumps to within

the sign across the boundary line between the respective zones are:
parabolic — parabolic

pa=|5} -~ [2]. .19

parabolic — hyperbolic

rls;l =2+ C [m}=2+C+ 1—:, (8.15)

where C and D are established in the parabolic zone,
parabolic — isotropic

D

rls,]=C, [m)]=C+ Py (8.16)
isotropic — hyperbolic
rls,] =2, [m)]=2. 8.17)

8.3. Point loaded plates

Let us apply the theory to point loaded plates. Consider a simply
supported plate a quarter of which is shown in Fig. 8.3. The plate is subject to

T
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the concentrated force Q at the origin of the polar coordinate system r, § and
its boundary is described in dimensionless variables, Fig. 8.3,

r = 1(0). (8.18)

<

Fig. 8.3. A quarter of simply
supported elliptic plate loaded at its q A
centre

We consider a parabolic stress régime. Hence the deflected surface is
a developable one passing through the boundary and through the point of
load application, thus forming a cone. The characteristics are straight lines
through the origin. They make an angle § with the normal to-the boundary

tanf = =, (8.19)

ot Sy,

where prime denotes differentiation with respect to 0.

The boundary condition on a simply supported contour requires the
normal moment to vanish, m, = 0. Since my; = m, = + 1 on the straight
trajectory the following condition on the boundary is obtained:

m, = m, cos?fi + sin?f= 0, (8.20)
where m, = m,. From (8.20) the stress boundary condition on m, follows,
A%
m, = — tan?fl = — <r£) > —1. (8.21)
0,

The inequality sign comes from the requirement that the stress profile cannot
go further than the hyperbolic point, thus e.g. the point D of the side 4D in
Fig. 8.1. The limitation || < =/4 follows from (8.21). It allows to find the
extent of a parabolic zone.

Under a point load the expressions (8.8) and (8.9) for the stress field in
a parabolic zone take the form
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DO
m=m=1 m=m=1+ C(0)+~£—2, (8.22)

55=0, =5, =C0)), (8.23)

where r denotes the dimensionless radius of the first curvature trajectory.

Since m, remains bounded D(0) = 0if r = 0 belongs to the plate, as it is
the case in the considered example of load applied at the coordinate origin.
Eventually parabolic stress fields in a point loaded plate undér downward
dirécted loading are of the form ‘

my=1, m o= —tan?h, s5,=0, rs, = —( + tan?f) (8.24)

for |B] < w/4. The stress field is fully specified by the plate contour.
Once the radial shear force is known the load-carrying capacity g, of
a parabolic segment can be evaluated, namely

6, 8,
9 = = fsrdt =~ j C0)do = j (1 + (?)z)do. (8.25)
] 8, o

i gy

The deflected surface (8.4) for a parabolic segment is a part of a cone with
vertex at the point of load application,

. . r
W= W, (1 - ~), (8.26)
)
W, being the deflection rate of the loaded point.
It is to be remarked that whenever the angle is not uniquely determined,
i.e. when discontinuities in the boundary slope occur, the moment
m, suffers a jump

[m} = rls,] = tan?f* — tan2f~ = constant. 8.27)

There is also a ridge on the deflection surface (8.26) along the straight
trajectory passing through a corner point.

For a hyperbolic zone the stress field is given in (8.10) for a point loaded
plate. If, moreover, the family of straight characteristics (3.51) forms
a Hencky-Prandtl net, extensively studied in the plane plastic flow, then the
load carried by a hyperbolic zone is

o

9 = — J‘S, dty = 2 fd() =20, — 0,) (8.28)

f

since 5, = 5, is given in (8.10) and r, is independent of 6 when the deflected
surface is a cone (8.26).
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No load is carried by an isotropic region (8.12). Such a zone, if exists in
a plate must be contained within other stress régimes. :

As an example of the proposed technique of deriving complete solutions
to limit analysis of slabs we consider an elliptic, simply supported plate
loaded at the centre.-Fig. 8.3 shows a quarter of the plate. The boundary
curve in dimensionless variables is

—1/2 A

1(0) = a(a?sin?0 + cos*6) a=7 (8.29)

In a parabolic region the bending moments specified by (8.24) are easily found
once the boundsry curve is specified, as it is the case in (8.29). One obtains

(1—g?)*tan®0

- 8.30
(I+a* tan20)? ®:30)

my=1 m =

In view of (8.21) the solution applies for the plate aspect ratio
' 1<as<l+4/2 (8.31)

otherwise hyperbolic zones are present. )
For the plate satisfying the requirement (8.31) the collapse load is found

from (8.25)
n
g =4 Kl + (?)2)% = §(1+a2). (8.32)

The velocity field is specified in (8.26) in the shape of a cone.

8.4. Welded solutions

The possibilities of combining different analytical solutions in the
complete one for a plate requires a study of a certain number of elementary
solutions corresponding to various shapes of the contour.

We shall consider the plate boundaries 7,(0) satisfying the requirements,
Fig. 8.4,

B0 =1, 50 >0 ®33)

and 0 < 0 < w/4. For definiteness, the analysis will be restricted to the case
my = 1. Knowing the boundary of a segment the load carried in the limit
state is established according to (8.25):

a) straight boundary:

m, = — tan0 (8.34)

1
o= ——
" cos0
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and the collapse load of a segment 0 < 0 < 6, is

n
g, = tanf),, - 6, < v (8.35)
b) circle:
=1 m=20 (8.36)
and a circular segment carries thus the load
qp = 6. (8.37)
Y
traight
i /5 .
ellipse
circle
L N,
e
)
%
Fig. 8.4. Simply supported
e al ] X plate elements

There is no limitation on the value of 0, within the range 0 < 6, < 2.
c) ellipse:

tanf,

1
= 1+a2 -1 2
qp 22 {( +a?)arctan (@™ ! tanf,) + a(a 1) a2+ tan?0,

} (8.38)

whereas the plate contour and radial moment are

- — 22 2
1y = a(sin?0 + a?cos?0)” 2, _ d=a?)tan’

" (a?+tan20)? ’ ®.39)
d) logarithmic spiral
Hh=e" m=—y . (8.40)
and the collapse load for the segment 0 < 0 < 0, is
% =(1+720, 0<0, < g 8.41)

-
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If y = 1 the zone becomes hyperbolic, m, = 1,m, = —1 and the collapse load
is then : .

gn = 20,. (842)

This result concerns a clamped plate as well.
Such elementary solutions for different loaded segments can be found in
Table 8.1 and may be ,,welded” along straight characteristics, [47], [89].

Fig. 8.5. Simply supported square plate with
rounded corners

As an example of a welded solution we consider a plate as shown in
Fig. 8.5, a square with rounded corners loaded at the centre. The load-
-carrying capacity is

g = 271 + 8(y — arctany). (8.43)

The result follows from (8.35) and (8.37). The moments are m, = 1 through-
out and

m, =

0, 6, <0< ®.44)

There is a jump in the radial moment on the line 40 as well as the remaining
points where the tangent to the boundary line is not uniquely defined.

In Fig. 8.6 a plate is shown whose boundary is composed of straight
lines and logarithmic spirals. The collapse load is, according to (8.35) and
(8.41),

g=4+ (+y)m, y=tanf. (8.45)

The bending moment m, = —3? is constant in the zone OBC and varies
according to (8.34) in OAB.
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Elementary solutions for various segments of plates

Table 8.1

Table 8.1, contd

Segment of plate

Collapse load, bending moments,
shear forces, deflection rates

q=0,-0,
my=1; 5,=0, 5,=——
r

m,=1 for r=0
m,=0 for 0<r<l
w=w,(1-r)

g=01+4(0,-0,)
1-A"

r

my=1; 5,=0, s,=-—

m,=1 for r=0
m=1—-A" for0 < r <1

6

24
(p—a)’(l +7,‘)

my=m,=1; s,=5,=0 for A0A

r 24
my=1, m,=l~g(r—a)2 1++}

p=

5,=0, 5,= ~§ (p*—a?) for AABB

Ww=wy(l—r)

p=6
my=1,m=1—r*
5,=0, s5,=—3r
w=vw, 1—r)

p=61+4"
my=1, my=1—r% (1+A4")
5,=0, 5,=—3r 14+ 4")
Ww=w, (1-r)

Ww=wy(1-r)
Q
|
1
|
R ! B g=tand, +tan0,; 6,,0,<arctan 4/ A’
5 1o | g M=l 5=0, 5= —(ltan)
Q o, ; m,=1 for r=0
| .
1
{ m =—tan?0 for0 <r € —
\ cosf
W=, (1 —rcosfl)
L
[1s6]

s, v
P (—ar(+2a)

ap \* 24
my=1, m,=l—£ (r—'—p) (1+ p)
6 cosd, rcosb,

4 a*p?
85,=0, 5,=—— (,2_ )
2 cos?0,

0,, 0, <arctan /A’

r
W=, (1 - cosO)
P

1457
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p=

rl
my=1, m=1——

r
R $,=0, 5,= —37

0,, 0, <arctan/ A"

r
Ww=w, (l —*coso)
p

61
p="", q=0p
P
P*q
=— g, =tanf, +tand,
60+ p%q,

rl
A my=1,m =21 (l—;)—(l—l) tan?@

r 1
5,=0, 5,= —31;—(1 —l): (1+1tan20)

0,, 0, <arctan{/ A’

r
W=w, (1 —_ oos())
P

p=624, g=ap
AO
A=
6x+ Al

my=1, m,=4(1-r?)
1
5,=0, 5,= »~3r2—; [P

w=w, (1-r)

Table 8.1, contd

40

p=61(1+4"), g=ap
A9
T 6a+A0
my=1,m=A"+(1+4) ) (1~r¥)
1—

A
55=0, 5,= —3rl(1+A")— . 1-2)

Ww=thy (1~7)

Q=1+ cotand(cotand, —2q)

sinf,

— T <a<cotanf,
sinf, sin(0, —B,)

B, =arctany/ A’ < 0,

a?sin%0
my=1, my=—————
a*cos?0-+ 2

1 1+ (a—cotan()*
§=0, 5= —— ———
r acos?0+Q

r
W=, (l ——)
P,

1158}

e

spiral g=e 2

yzgz
g=0, (1+ 3"
v00<\/A'

my=1, m,=—(y0)*

- 1
5=0, s,=——(1+ (0

W=, (1 —i)
relT]

(159
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g=01+77)6,

y=tanﬁ<\/;

1
5=0, 8, =—"(1-7)

r
W=, (1——)
P,
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g=(1+40,
my=1,m=—A"
1+4"
5p=0, 5,= —
r
=0, mi=
1+4°
=~ sin (2 arctan )
1+4'
Sp=— cos (arctan ﬁ )
P

r
W=, (1——)
p.

p=a exp I:\/I (00—-0)}

ellipse

1 tanf,
g=—<(1+a? arctan( )}+
2a a

Sp=

R

tanf,
a? +tan®f,

1<ag/a+4/1+4

(1—a?)tand
(a? +tan?0)

a(a*-1)

my=1, m =

1 (1+tan20) (a*+tan20)
, §=—

r (a® +tan?0)?

r
w=w (1 ——)
P,

p=a (sin?0+a?cos?0)

[160)

Fig. 8.6. Simply supported plate with boundary composed of straight lines and logarithmic spirals

To show the procedure of deriving complete solution combining parabo-
lic and isotropic régimes let us consider a simply supported circular plates
loaded by the point loads Q, and Q, as shown in Fig. 8.7, [91].

Fig. 8.7. Simply supported circular plate under two point loads

The complete solution consists of the parabolic zones SCS'O; and
§'BS0,, joined by the isotropic régimes SO, 5'0,. In the isotropic zone of the
plate the internal actions are:
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me=my, =m =m=1, Se=8, =8 =5=70. (8.46)

In the parabolic zones SCS'0, and S'BCO, the bending moments and the
shear forces expressed in polar coordinates with the origin at the point of
loading, Fig. 8.7, are, respectively,

a?sin20
my =1, m = - 1—a?sin26’
L (8.47)
=0 %= a0’

where a = A[L.
Along the lines 0,8, 0,5, 0,5, 0, discontinuities in the radial moment
appear, as can be seen when comparing (8.46) with (8.47). The collapse loads

are found from (8.25)
2 . (n - a,lfcta.n(ﬁ-—d; sin ¢ )),

9= Ji-a a+cos¢
(8.48)

2 - —— sing )
== \/1_7751i <y — arctan <\/1~a a—cos ))’

g maq, Fig. 8.8. Comparison of the exact
q=(1+alq, and the yield line solutions
for simply supported circular plate

6 " L . s

0 02 D4 06 08 @« 10 under two point loads
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where y = 0if ¢ < arccosa and y = = if ¢ > arccosa.
The solution is valid for the following range of load eccentricity

O<as<k (8.49)

\/5 ,
where k = 1/sin0, for 8, < n/2 and k = 1 for 0,> m/2.
The angle ¢ specifying the meeting point S of two parabolic régimes is
given by the equation
Table 8.2
Complete solution for circular plate under point loads

L L o L

=l Y1=a? sin ¢,
q l7,_—C12=L7/'cfan ostoest

b=r/n , 023, lals =1

V2 sind,

-0 o1 VI sind,
q q murclan cos -
in?
my=m,=1 1y =1, m =--9%sin’@
e o 1-a?sin?@
55=5,=0 5520, sf:—-}--——~——’ |
1-a’sin’8

- = 7
[m Jzr [s,]“_m
o
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y—arctan («/ 1—a? i{l'(ﬁf)

_ a—cosg)

12
9 m—arctan( 4/1 —a? _sing
a+cos ¢,

(8.50)

o =

It is interesting to compare the obtained complete solution with that
following from the yield line theory given in Chapter 7 for the ratio of the
loads o = 1, Figs. 7.15a and b.

We can observe that for the load ratio 0 < « < 0.5 the differences between
the solutions are of the order of a few per cent only. The largest differences are
obtained for @ = 1 at the largest admissible eccentricity for the studied
complete solution involving parabolic and isotropic régimes. An illustration
of this observation is given in Fig. 8.8.

An analogous procedure is applied to plates loaded by several point loads.
A typical example is shown in Table 8.2. The central star-shaped region is
isotropic, the rest of the plate belongs to parabolic régimes. A collection of
tables can be found in the Appendix, [89].

8.5. Uniformly loaded plates
As an example of matching different parabolic régimes we consider

a uniformly loaded plate shown in Fig. 8.9. Its boundary consists of straight
lines and circular arcs. We assume, as will be justified later, that the solution

Fig. 8.9. Uniformly loaded simply supported plate
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consists of two parabolic régimes associated respectively with curved and
straight boundaries.

For uniformly distributed loading the stress field (8.8) and (8.9) becomes

D 2
mo= =1, my = m =14+ ) + 2D 2

r
(8.51)
2
=5 =0, 1 =cO-%
where p = PL*/M°.

The solutions for the regions  and 2 are matched on CE and DF requiring

the collapse pressure for both parts to be the same, p, = p, = p. In the zone
1 the stress boundary conditions are

m =00nCC, s,=0andm <1latE (8.52)

and the stress field (8.51), expressed in the polar coordinate system with the
origin at E becomes

¥ ' r
my =1, m,:l—rzﬁz, s,=3rP, (8.53)

where » = R, /L, Fig. 8.9. The collapse load of the zone ] is found from (8.51)
and (8.52),

L2
p=6 7 (8.54)

In the zone 2 the boundary conditions are
m, = — tan?0 on CD, s, = 0 and m, = 1 on EF. (8.55)

The stress (8.51) is easily established, [77], and the collapse load is found for
the zone 2 to be

6
P=—7" (8.56)
322
B

Equating the results (8.54) and (8.56) the relation between the plate
parameters is obtained,

- G e
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Egs. (8.54) and (8.56) give the collapse load of the considered plate. Due to
the parabolicity requirement (8.21) the solution holds for 0 < 4/L < 2.

There is a discontinuity in the shear force and in the radial moment across
the trajectory FD. The jump is not constant as it was the case of point loaded
plates, but obeys (8.14). The line EF corresponds to an isotropic régime.

The deflection velocity consists of conical parts corresponding to the
curved boundary and of flat portions associated with the straight edges.
A ridge runs along CEFD.

For an arbitrary boundary curve the analytical solutions are seldom
possible as the envelope of straight trajectories is not known a priori.
A suitable numerical procedure can, however, be developed for plates
uniformly loaded over a part of the middle plane, [52].

y
Fig. 8.10. Partially loaded
fragment of simply
o supported plate

Lét us consider a simply supported plate, a fragment of which is shown in
Fig. 8.10. The non-loaded part carries no shearing forces and hence belongs
to the isotropic régime.

UNIFORMLY LOADED PLATES 167

The loaded part is assumed to be in a parabolic stress régime, thus the -
bending moments satisfy the condition (8.20). Let % and ¢ be the boundaries
of the plate and of the isotropic stress region, respectively. By , (8) and r, (6)
we denote the distance of these curves from the envelope & of straight
trajectories, as measured along the second trajectory.

The boundary condition on a simply supported edge & is

m, = —tan?f, on r = r(0), - (8.58)

where g = 0 — 74, Fig. 8.10. Along the line ¢ separating the isotropic and
parabolic stress zones

m=1 1r,=0 on r=r(0). (8.59)

Application of the boundary conditions (8.58) and (8.59) to (8.8) allows to
find constants C(0) and D(6) as well as to establish the following expression
for the collapse load:

p = Sd+tanfy) (8.60)

(r,—n)? (1 +2 i)
rl)

The bending moment and the shear force along the straight trajectory are
mo=1— Ié(r - r1)2<1 + 2%) rs, = — g(rz — ). (861

It is seen that m, decreases monotonically with r and takes values ranging
from 1 to —tan?f,. The condition for the parabolic type of equations is
always satisfied if tan?f,< 1.

If ¢ denotes the arc length of the envelope & measured from a certain
point on & then

1 (dy, dt
tanfy = ?O(E - Eé) (8.62)
Similarly
1 [dy dt
tanﬂ, = 'r; (% — %) . (8.63)

Eq. (8.60) can be written as follows:
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no 1 [6(1—tan?f, )
LN 8.64
52 ( Pa—n)? - @69
whereas’(8.62) and (8.63) lead to
d
0= ="% tanfly — r tanf,. (8.65)

The set (8.64) and (8.65) can be used to compute the envelope of straight
trajectories numerically. An iterative technique to construct the net of
trajectories, the envelope and to find the collapse load for plates of given
boundary curve is described in [52].

£=0320

-05F

Fig. 8.11. Elliptic simply supported plate under uniform load

In Fig. 8.11 straight characteristics for a uniformly loaded elliptic plate
of the aspect ratio @ = 1.5 are shown. It is seen that the isotropic zone
reduces to the line 04, which corresponds to a ridge of the deflection
velocity w.

The deflection velocity surface is developable, of the generatrix intersect-
ing the boundary curve with i, and tangent to the envelope.

UNIFORMLY LOADED PLATES . 169

Table 8.3
Collapse load for simply supported elliptic plate

a 1.0 i1 -1.2 1.3 14 15
P 6.0 548 5.08 4.76 4.52 431
4 0.0 0.053 0.113 0.178 0.247 0.320
a 1.6 1.8 2.0 22 24 26

P 4.14 3.89 3.70 3.56 345 3.37
4 0.397 0.557 0.726 0.901 1.081 1.265
a 28 3.0 32 34 3.52

P 330 3.24 3.20 3.16 314 .

I4 1.451 1.640 1.830 2.022 2.137

Table 8.3 gives the collapse load p and the ridge length & of the plate at
collapse. For plates of @ > 3.52 the parabolicity condition (Bg)ma < 45° is
not satisfied and a hyperbolic régime appears. Thus the solutions are
applicable to plates with the semi-axes aspect ratio a < 3.52.
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List of solutions

List of symbols
XY — Cartesian coordinates
R0 — polar coordinates
L — reference length
H — plate thickness
M°, My = A'M° — ultimate moments for positive and negative
bending
A — coefficient
M, M, M, M, M, M, M, — moments

‘;’;‘ sy‘ Sr' Sﬂ' Sl' Sz

KoK, Ky K K K K,
P, P Q

shear forces

deflection rates

curvature rates

collapse loads: distributed, line,
concentrated, respectively
simply supported edge

clamped edge

free edge

column without restraint

— yield line
— downward-directed concentrated forces
o — line load

M, M, M, M, M, M, M,
m,o=—=m =—",m_ =, m = S mo=—,m =-—>,m =",
* o T Tyt T et T T et T Mot Mo M
s.L SL S,.L S,L S L L
= = s m g =g = =i
M° M M° M° M° M°
L4
W=,
L
k, = HR,, &, = HRK, k, = HR,, k, = HR,, k, = HR,, %, = HR,, k, = HK,
PL* _ PL Q
mw Pt T

No. Pattern of plate page | No. Pattern of plate page
1 176 | 8 183
2 177 | 9 184
3 178 | 10 185
. N 186
4 179 | 11 I % ! 187
1 '
= 4 188
189
5 180 | 12 190
f=======5 ji
| |
] o o |
181 | 13 | Q, Q | 191
| !
e d
_____ {____1
|
7 182 | 14 ! —|} 192
4@ Q 4 Q



http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

CATALOGUE OF COMPLETE SOLUTIONS

No. Pattern of plate page | No. Pattern of plate page
Q

15 193 22 200
Q

16 194 | 23 201

17 195 24 202

18 196 | 25 203

19 197 | 26 204

20 198 | 27 205

21 199 | 28 206
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No. Pattern of plate page | No. Pattern of plate page
29 207 36 214
30 208 | 37 7N\ 215
/ \
I \
31 209 | 38 216
cycloid
32 210 | 39 . 217
33 211 40 218
34 P 212 | 41 219
35 213 42 220

O
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Pattern of plate

No.

page Pattern of plate page
235 P
57
26 | % ¢
: 243
58 (// \\‘ 237 | 65 244
\\\ ///
59 238 | 66 245
60 239 | 67 246
61 240
I/ —————— NS
| |
62 | P A1
\\~____’//I

174 CATALOGUE OF COMPLETE SOLUTIONS
No. Pattern of plate page No. Pattern of plate page
43 . 221 50 228
44 222 51 229
45 . 223 52 230
46 P 224 | 53 231
P
47 @ 225 54 232
48 226 55 233
49 P 27 | 56 w| P P) | 234

63

242
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PLATE |

PLATE 2

g=2n

my=1; m=0

sa:O,- S,=-

S

W =vig(1-r)
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PLATE 4
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PLATE 3

q =2 NG,

::
g =(1+4)§;
mg=l; my=-A
Sq =0 s,:»’j,"'
ts)=Lim -4
W=, (1-r)

22,

mo=1; m, =- —2SIN%Q
i " 1-d’sin?8
=0; s:~—1-——}-L—
"~ I 1-d%sin%®

55 ;
v ;  9=acos@-/T+a?sin?0
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PLATE 6

PLATE 5

I<as VA +/T+A ‘ qg=2na
DT T/ (mmmmm —
——
] (1) sin?( arctant L))
R .. (1-0%’tan’® ]
Mol i M e T an?6)? . myel m,=.ﬁfﬁ_)‘,,- y = /T
6.0, s o] (ston’@)(lea'tan’0) ] 7a-ycos@
o” T (I+a*tan’®P | 59=0; s=-L01s y’sin’@
=i, (1-£) a 1 (a-ycos8)
w=w(1-£); 9= - -
ol1-g7i ¢ cos?@+?sin?@ Wi (1-£)  g= a?oy?
9 a-ycos@
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PLATE 7 ’
‘ PLATE 8

a’n?
7/

244
T

g=n(2+

S

O<a <

q=0 q:/%(n—arctan{-@))
2 eim2,
. m, =m_ =1 my=1; m, =- 23078
g,= B (1+ &) d e T ied%sin®®
" Sg=5, =0 Se=0; s,:—% 5—
mg=1; my=-(a8) ; 7 ; l-a-sin’®
(s, =4tim ] =4 —2L _
0 - L(1+a?6%) roa o4 T -a%sin?0
$g= Se=-pllra L w=w,(1- L)
W, fcosy 9 =acos@+/T-aZsin?@

1m,]0A=r[5,1::(a9)2

W=y (1-r) W (1.5 g =eo?
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PLATE 9 3 PLATE 10

q=42, 1 2

4 =754 arctan “_L'ffos_”;‘ s =R nz3
8,7 —les arctan(/T-a? 254 ); fal < {—A— A - i
T o/i-az sin #-a 1A lal < [l

< |7 e,

-—al__
¢ .
=7%arctun———-—‘-9""ay"

v (-a+cos ¢,)
. = =1 m, = 0’sin?0
’ Moz, =1 Poli M dsinte
= t 1-cPtané,
S grareantatns) 59, =0 50705 9% 7 pomite
=1:m, =--02Sin?0__ :
m, =0 el G2 sin?G j (m, =15, b= sl
i ; — —
r_l sa:o;srrm wew, 0<n<a wevig(1-5)
i ] vi/:wl-r,\s] = /1-aZsin?
1, Jpy=rls,lpy =1 (m,Jp=rls = ks » g5l asy 9=0c0s8+/1 "5”’_9
v=w(l1-1,) Wi=w, 1, cos Wil 1-7)
= - =W, -
W (-5 26059 | o-acos@+/I-a%i70
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PLATE 14
y ) 1%
R . ) rS_______ -
== ; 1
Q ! 1 :
LY - ! ; |
i ! |
! |
Q Q : |
27 oq T2 T o'q X
[ L ol L - L. L L o
q=2(9,+q,)=4
A=l
2
|
. i
- ]
1
G 20, G
0 7 0 T X
g =tan =1 =t
my=mg=1; m,=m, =- tan’®
S, =54=0 ; 5,55, :-%{Ivtun" Q)
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{m,1,.=0

W =W, (1-y)

PLATE 15, [48]

q=2/1'tan%

Ll
ct<2c:rctanw <3

m,,.—m,:/\'fan%: m,=m,=-A'; m, =0

Sc=5,:20; 555,70
We'2y
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PLATE 16, [48] J PLATE 17, [48]

q=2/A+(1A)(a-2arctan 7/%)

a= ZGI‘CIGH# ; y=arctan ’ﬁ

: 2
my=m, =1; m2=rn,:~(§) My =0

5,25,20; 5,25,20

Wi,

9

X(2)
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PLATE 18

CATALOGUE OF COMPLETE SOLUTIONS

197

q =2ntan-’2‘- zna

n>4

n-number of polygon sides

mgzl sm, ==tan’0 ; o <arctanvA’

5570 5,:.%(1.mn19)

{m, Iy =rls.d,,=0

q :ﬁ;(cotcny; +cotany;)= _Z";a,-
'KDf;?K-DFEfGn\//T‘ ;
Yi ;g»arcran/ﬁ

n - number of corners

; m, =-ton®@; @<arctanVAl

W=, (1-r cos®)

5520, s, 2-L(1+tan%0)

[mely,, =0t by, =tany,, ~tan?p;

Wz, (1-rcos @)

PLATE 19
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PLATE 20
PLATE 21

Leotany_, Lcotana

q =4(cotany + cotan @ -cotan{a@ +y))

_arctan JA < a < &y varctanVA; yz=B-arctan VAT ]
g zr 1=2 q=2n+8(a-arctana)
0<sas VA

===5A

g =cotany g=cotana -cotan(y+a) 1

=1 m.=-tan? =7 = 2 f

my=l; m,=-tan‘@ my=1;" m, =-cotan®({a +¢) | q=tan §,
2 - -1 2
5g=0 5, :~F7(7~tﬂﬂ 0) | 55=0; s,=-¢( +cotan (o) mg=1; m, =-tan’®
tm, 1, =rls},, =cotan’(@+y)-coton’y 5520 5= {1+ tan%0)

w1 o (1 sinfa.+¢)

W =W (1-rcos ) W= (1 " Cotanysina ) | {m ], =r(s,,, =ttan0,
Wz, (1-rcos0) Wew,(1-r)
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PLATE 22

L Leotany

q=4(cotany+/1+ %—2 arctan —190Y.
fie gz
2 =1+cotany(cotany -2a)

L _sinfarctand) . o < cotany ; ',;g-arcianﬁ

"SinY Sinfy-arctan /AT

JaL,

|
1
;
)
|
!

e

B B
[ A L Lany | Ltany L

L

g=2tany+(1+A) ;
Y < arctan VA"

tan
q =cotany q= "%‘U’fm”ﬁ

q=0 Q= tany
mg=m, =1 mg=1,; m, ==tan’6
Se8- =0 5520 5,:~-I_L{Manze) Sg=0; s, == ’;A'
(s, =t im =k t1tan?y); ts = Lim, 1 =4
W =Wy 1 cos ) W =iy (1~rcos®) W=y (1-r)

2ein?.
m_ =-tan’® my=t; m, z-2SNP

mg=1; =
° r a’cos?s + 2

=0: 5, = 2 0 s.=-1 20
5o=0; s,= -rL{hmn 0) | 5,=0; s,= F(E;L_;;F)

Zain?
(m, ], =rls] =-cotany+ —4 S0
s oA " avaZcos?y

W (1-£)

g=acosp+/a%cos g +2

W=W,(]-rcos@)

PLATE 23
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PLATE 24

g=2tan ¢,
= ’?r'% -arctun(;:—gcotun -g); PERS
n-number of forces
8, < arctan VAT

g=tan ¢,

my=1

2
521 m, =-tan’@

=0 s =1 2
59-0,5,-—7—fl+lane)

(mgl,, =r{s.],, =t(1+tan g,)

wa, 0<n<a
W,
e (1-5); a <4

W=, (1-rcos®) .
ws=

<7

PLATE 25

[ L e L -
g=4tan g,
@, =nn_7 < arctan VA ;  n-number of forces
.
n =entier —"——]- =2 £
[arclanﬁ" I s=piyeotan 225

q,_;Zfanﬂ;,
mg=1; m, =-tan’@
5g=0; s,=-L(1+tan’e) 535,50
/m,10A=r[s,]M:l»(an2¢
Wi, (1-958 ) Wy (1- 088 )
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PLATE 27

p=arl~u)
-
m
Sq=
(s, ], = !

Tt " agi-a)

v =W, O<r<a I v'v:%(l—r); agrs

5. 1A
P ali-o)
-
= =1 1%
ma-l,m,.l-l—_——(l—%)
e = A
om0 s e
I+
Mt afl-a)
Wsv, O0<r<a vi/:,—_WL(l-r}, a<gr<
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PLATE 28 PLATE 29

.
Q|
mg=1; m':l—g my=1; m,:_/\"_f__)._..?_/z'a’“T"
5=0; 5.0 5520 S, == (’;_/é}'ra
lih-a
= I o™ 17678
04,0, 5 ol
"7 (1-b)b _u 1-r
W ey 1L WA
=iy 1=

a
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PLATE 30

PLATE 31

Afr-a) 5.4
<45 P=i5-aib
b(b -a)
r
|
. *—J )
3| B‘L » i
= m, = 400l r-a A mo=Arler) ] : —
Me=~dL; m, = 2 my=-A 5 m= Al 1z gz ”’r:'/\'”’E%EL,:_a} my=-A ;s m=ArLr)
=0; = Afl-a) S50 ; 5,20 : -
$=0; s, r(b-a) o 4 ‘ 5%=0 ; 5’75—73)7 5g=0 5 s5,=0
=A'(l—a_) ‘
., bfb-a) “’I“”;{T%)—b_
Tt W=w,(r-al
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PLATE 32 PLATE 33

5oL Al1-bl(b-a)+(2b-b%-q)

ped Ab(1-b)s(2b-6%-a)
b (1-bj(b-a) b

(b-a)(1-b)

50 1A L
Bl YD)
me=-A ; m,:I-Ebi_‘é\)-rlf my=l; m,:,—'%—%
0 sl ;
570 s =7rip) 520 =@ bl %07 S 7y
) 2
(my gzl A ; lsr]:b:_/\(l‘bg_(b-al:(é'b—b -a) A _Ab(1-b)e(2b-6%-a)
o " 51 b])(b a) A I R 77 ST (=
W, g W= 18 e, 5= Wi, B
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PLATE 35
PLATE 34

1eA 20-0°-a
b (b-al(l-b]

5-1 Alb-a)(2-b)s(2b-b>-q)
b~ {b-a)(1-b)

o

el

B N (17) - 4
my=1; m'"'A'L]%BbT

S50 ; s,:-lﬁév(ij—b)

: z
[myl p=-1-A'; 5.1,z b-a)(2-b)+(2b-b°-a)

d bib-a)(1-b)

Y = R )
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1 PLATE 37, [48]
PLATE 36, [48]

my=l; m, =-tan’0, 0<6s§’-
numerical solution A=l 0, a1 7
™Y J =T Z
mg=1; m,:hA(Q)aQr@) ] . cos“0
- Wz Hs(2c056-r)
Sg=0; s,:ﬁﬁﬁ} 1 . 2cosB-1

w(r) - developable surface

x {000 o02] a5 0c] 0506 07| 08] a5 [ 70
p | nsz|i2e [ 1008 0762| 0552|0377 ] 0238 0133|0059 | 0015 | 0000



http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

216

CATALOGUE OF COMPLETE SOLUTIONS

CATALOGUE OF COMPLETE SOLUTIONS

217

PLATE 38

me-

) m. :—];%"ﬂ_e

2sin8 4sin@
L

5420 S, -;

v==%__r26ing- L
w 25/}78-1(25”78 2r)

2al

2at

B=2r(1A)

m, =1-201-A)(1-Z: 5in0)

my=1
e 2sin@ 4sin@
r ST
§
59_—0; sr:_iﬂ?‘.m

W o
w.m_’iej(25m9 ?'LFJ

2al

PLATE 3%
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PLATE 40, [48] PLATE 41

Yi
| 5 |
| e i
! |
B T S S | —
| _ |
| I !
- B [
5.40
P:ﬂ?
g ,
FSASI
p=6
A - -4
m_.i—?x, my =0, mxy“b’?"y
4 4
sK.AE;x, sv,Fy my=1; m=l-r?
v o b2
W=, bx Sg=0 5 =-3r
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PLATE 42 PLATE 43

p=6(1+4)} p:i_/?\
1 i 2
maels el mo=-A i m A0S
9 2
5,205 s,=-3(1A)r %<0 s=3A0-Tpl
W, (1-r) W =v'v°5’
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.6
P* fima)Za )

p= Blied-a)
(1-a)?(2a+1)

mg=1; m = L(01-7)tha)a EL)

= ~Afa- -
My=1, ’"ﬁﬁ%*f({f—f"ﬁﬁ*u)ﬂr—’)

2_.2
550 s, :%’(%{_;

570 0 5= 5195

. V'»{, -
W'I—a (1-r)

Vg
1-a

W= (1-r)
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PLATE 46 PLATE 47

\ A
=64 p=—20
P* fa)izval s (1=aP(a<2) ;
A e faller), B 2 (lea)a(l-
my=-A m,:ge((l-r")-“‘"),“("”} my=-A m,_.Tf;%éﬁ)'gm.,—).(_ﬂlg(_ﬂ)
| 7
5,20; 5= L0155 1 =05 5,255
g =Y TG | i
T k- oo Ve
W= J‘»%a fr-a) wegtg(ral
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PLATE 48, [48}

PLATE 49, [13]
B NP R =
4 \
~ / ‘ i
: \
j P
S S
i : |
\
. | ,
A !
\ | 7.
. el L N
A D B
e L L .
p =107128
( humerical solution }
AD/AB = 046001
CE/CB='084225
CH/CB = 009386 ,
CG/CB =003899 A=l
p =440
E
numerical_solution A=l A D~————-—B
2 N
my=l; m,-JoA(G)‘ﬁ,-L@J-%L m, =1, m.=leA@@)» B Br?
- £ r6 m, =1 m, =-1 m, =1, m,=-1
$5=0 s, :Ai,_@—)—% maFh-1
% =0; s = s -2 -2 =L ;g -2
w(r) -developable surface Se70; sy=Ala)-55 Sesgy i St R A
x Joolor]o2f 03] as|os]o6]07] o8] a9] 10 (e =My duge =00 [ hge = [Mos Jye = (50 Jaee =0 mag=syt =0
v | n/2|1303{ 1065|0864 0696| 0552|0425 | 0310} 0.203| 0100 |0.000 wir) wluv) Wluwv)=0
developable surface #, %, <0 !
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PLATE 50 PLATE 51, [48]

21
P
2}

14421
111899
nr 107128
or 96096
9t
8
n=oo

L L ) 5 4 N 3

0 o1 02 03 1n

o - numerical results

n - number of polygon sides
moments , shear forces, deflection rates
as for square plate (plote 49)
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PLATE 52

p=6 Protar= 6ntan &
n -number of polygon sides n> a—;c—é%ﬁ-,
n=4| 5 6 | 7 8 [ 9 [ 10 | o
Do 24 2180 | 2076 | 2023 | 1988 | 1965 | 1950 | 6n
my =t m, =1-r?
Sg=0 s,=-3r

Is )y, ={m ], =0

W= (1-rcos@)

CATALOGUE OF COMPLETE SOLUTIONS

PLATE 53

Protar =3 Z (tana; + tan vi)s?

a;y: <arctan VA
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PLATE 54

cl

cl

pz—b_
(¢/a)
ui =2 gs/‘na' 4(-5-)75/‘/72& -Js/n?a.‘Z-g-s[ncL sin2a

. s
5 arctan /}T"sasz

mg=1 B 5
m':"§(3 (s-c)° 2 [s_cé -7

cos? T cos
0, 5,2 L7 A5=2)
%070:s Z(F fcosza)
(mJ,,#0; [s],=0; Im L o =Is; ] =0
v'v:%/ﬂ(s—Fcos@J W:%(l»-’u;—se)

VA +cotana > sina ; LA -
' a7 cotana+/A”

CATALOGUE OF COMPLETE SOLUTION

PLATE 55, [44]

O0ss<co

]

04

{m, 0 (s, ]

Wn (1) -s<sx<s
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PLATE 356 PLATE 57

VT -
‘ —
| R
| 1o
i X 1 )
i P P3P -
{ v
! Q|
L sL _1_ st o
1
p=2(1+A)
. 6 R 6
sA1-6)2(1:2b) " F2(1-y)%(152y)
y< 24— re/TE
2(1+A47)
2, S B
Y2 SNAT "=z
V’ 2 O0<s<o
| p
o i ¢
p=2(IvA) p'=6(1+A' ) =3p P [ ; \
] 6= 0, A
1 1=(1e)y’rn, 20 1 ) | ?? 50 :
my =1, my=1-(1e TN m.=1;m,=1-r<1+ z - ~
4 4 . ’"’:’"s(rrybmzm ”'rcgssz—)) sl )r(:«z) (12 me=li mesl
B
5,20; 5,2=2y(1+A) 5,20 5,2=3r(1+ /) 5 b%s g(r »yyrz)
, %= b)2(7o2b)(’ cos ) ) S =0; 5520
Im,],,=0 s, ] =tr(lvAy) -
(m, Je#0 5 s 1y 20, Im ) =[s ], =0
=W (l-y); -s<x<s waw,(1-r) W=W, (s -1, Jcos8 VT L) W=, (s-r,)cos@
WaW, (-4
bs/cosB <1, <s5/c0s8 r (s-1)/cos@ <r,<bs

1=y - SOy IO-7 5 2a752yT )
P N N = s N B8 ) ¥ |
s A 21 0»3—_(—1’1—27)?;—‘
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A ' o 16
PLATE 60, [52]
€ 4
|
|
450 0 15
-6 | :
L i . I j t
| .
! I3
2250 \\4 20 4
1
!
A T .
L~.\__“4
) i
0% 7 3 ¥ g 0

n/2

p=438

numerical solution A=1

2
Mgzl i m =l B (127014 28)

$g=0 ; s,:-zg(%z-r)

|
A i
W gelg-r) |

| p=431
b ] |
numerical solution A=l i
2 2
me=t; m=1-B01-2 )10 48)
2
5920, 4; (£-r)

: - |
W_-_%_(?.r) -

¢-5 . -
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PLATE 6i,52]

’I 05
0121029

p =494

nurmerical_solution A=t

2. 80, 28
my=l; m=1- B2 (1445

. 2
$g=0 ; s,.—g(%—‘r

W= —ﬁ’ﬂs—(g—r)

o-

p=8(1xa)
1+3a

numerical solution

PLATE 62, [87)

55

50

45

w0 u 2 13 14 15n 40

.2 &3 2 2
my=l mf:Lp(%—-;—;,g—) my=1; m,:!—%
2
-0 - r
520 ; s, »szi;"%) S=0 ; sz’%

W=, (l+a-rsin®)

W:E";f;—(g»r)

W =iy (1- €058 1)

g2=1239 ;9 :arceos

a’e(n-g)?

I+a

a+1,c058,
7 ;

3

" 21(n-g)sin®,-acos 6y
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PLATE 63

_bn
3a+n

G=ap

p=

1. 3aenr? N
Jasr
5.20; so-dasmrd
K C (Baem)r
Vo svg(1er)
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-6 ¢
P 3ger (1)

q=ap

my=1 5 m= 3L g1, 4)

620 ; s--3@r) A
" (3@ +m)r

W= (1-r)

PLATE 64
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PLATE &5

690
G+ 6
G=ap

I < arctan /A&

9,7 2ntan &

______Nn-number of poligon sides

Mg=l, m,= (1-r?+tan’@) -tan ©

o<y<! ye=do

o
G 64

35=0; 5,=-L(3r2-1-tan’g)- F1stan’e)

‘m.1,,=0s,] =0

04"

W, (1-rcos @)
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-p 6 : =p Fa,
ey S A

-pi); G =tanBj+tand) q;

2 7 2
m=u(§§»u‘j%réﬁpaul Y=

P grap; >0
p"e’"/muxs,)? s

; 0<n.o=,%°—<oo

Mgz

LD)-t1-ptan?e’ ;B = bﬁq'l?

] 2g
5670 ; Sr:Jﬁ,-—srr'(”ﬁi)?{"'”” o)

B ] isl i
(mdy, =ml-ml + [s Jy =5.""-5]

W=wy, (1-£cos @'); o/ <06
J

i

<o, @:,8; < arctan VA

PLATE 66

!
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PLATE 67, |48]

(=gl al ! L

=2
p=$
A=l
me=0; m,=0; m,g=1
5‘):-% s, =0

r——
b3
“
v
Q
N
@
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